Skip to Main content Skip to Navigation
Journal articles

Global Stabilization of Linear Systems with Bounds on the Feedback and its Successive Derivatives

Abstract : We address the global stabilization of linear time-invariant (LTI) systems when the magnitude of the control input and its successive time derivatives, up to an arbitrary order p ∈ N, are bounded by prescribed values. We propose a static state feedback that solves this problem for any admissible LTI systems, namely for stabilizable systems whose internal dynamics has no eigenvalue with positive real part. This generalizes previous work done for single-input chains of integrators and rotating dynamics.
Document type :
Journal articles
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download

https://hal-centralesupelec.archives-ouvertes.fr/hal-01633364
Contributor : Antoine Chaillet <>
Submitted on : Tuesday, March 3, 2020 - 2:21:44 PM
Last modification on : Wednesday, September 16, 2020 - 4:50:52 PM
Long-term archiving on: : Thursday, June 4, 2020 - 5:11:02 PM

File

Manuscript_SIAM.pdf
Files produced by the author(s)

Identifiers

Citation

Jonathan Laporte, Antoine Chaillet, Yacine Chitour. Global Stabilization of Linear Systems with Bounds on the Feedback and its Successive Derivatives. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2017, 55 (5), pp.2783 - 2810. ⟨10.1137/16M1070141⟩. ⟨hal-01633364⟩

Share

Metrics

Record views

305

Files downloads

183