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Stability Analysis and Robustness Assessment of Deterministic and
Stochastic Nonlinear Moving Horizon Estimators

Rata Suwantong, Sylvain Bertrand, Didier Dumur and Dominique Beauvois

Abstract—This paper proposes a discussion on the classification
of the formulations of nonlinear Moving Horizon Estimators
(MHE) of the literature into two categories: deterministic and
stochastic. The stability of the dynamics of the estimation error
is discussed for the MHEs in both frameworks. This paper also
provides full explicit formulation of the stability conditions for the
MHE in the deterministic framework, which were not given in the
literature. Furthermore, robustness of MHE in both frameworks
with respect to model errors is investigated through a simulation
example of space object tracking. Comparison with other more
classical estimators such as EKF, UKF and particle filter is also
achieved.

I. INTRODUCTION

The Moving Horizon Estimator (MHE) computes an esti-
mate at the current instant by solving an optimization problem
based on information from a fixed-number of latest mea-
surements collected over a finite horizon. Its optimization
parameters are generally the initial state at the begining of the
horizon and the process noise sequence over the horizon. The
MHE has been proven to be more robust against model errors,
poor initialization and bad tuning compared to classical filters
such as the Extended Kalman Filter, the Unscented Kalman
Filter and the particle filters [1][2][3].

For discrete time autonomous nonlinear systems with additive
process and measurement noises, formulations of the MHE
exist in the literature in both deterministic and stochastic
frameworks. The deterministic framework refers to the fact
that the initial state at the begining of the horizon, the
process noise and the measurement noise are considered to be
unknown deterministic variables of unknown characteristics
that take their values in known compact sets [4][5][6]. The
stochastic framework refers to the case where these parameters
are considered as random variables and assumptions on their
statistics are made [2][7][8].

A major issue in nonlinear MHE is to provide stability
guarantees of the estimation error dynamics. In the stochastic
framework, some stability conditions have been provided in
the literature [7] but they are difficult to deal with for practical
implementation. On the other hand, more tractable conditions
have been derived for MHE in the deterministic framework
to ensure bounded convergence of the estimation error [5][6].

R. Suwantong is with the Geo-Informatics and Space Technology
(GISTDA), 10210, Bangkok, Thailand rata@gistda.or.th

S. Bertrand is with ONERA-The French Aerospacelab, F-91761, Palaiseau,
France sylvain.bertrand@onera.fr

D. Dumur and D. Beauvois are with the Department of
Automatic Control, Ecole Supérieure d’Electricité, 91192, Gif-sur-
Yvette, France didier.dumur@centralesupelec.fr

dominique.beauvois@centralesupelec. fr

These stability conditions are based on mild conditions on
the continuity of the state equation, the observability of the
system and the finite sensitivity to the measurements which are
easy to be verified in practice. Another condition concerns the
weight term on the initial state at the beginning of the horizon
which is used in the cost function of the MHE formulation.
Explicit formulation of all the terms involved in this condition,
and which are useful for practical implementation, has not
been given in the literature. This paper therefore provides the
formulations of all the terms used in the stability theorem of
the MHE in the deterministic framework.

Another concern in state estimation is robustness of the
developed estimators with respect to model errors. This paper
hence proposes such a robustness assessment of the MHE
in both frameworks through a simulation example of space
debris tracking during atmospheric re-entry on Earth, which
is an nonlinear estimation problem where high model errors
are present.

This paper is organized as follows. In section II, the notations
used in the paper, the system definition and a generic formu-
lation of the MHE problem are provided. In section III, dif-
ferences between the MHE in both frameworks are discussed
in terms of assumptions, parameter tuning, and stability of
the dynamics of the estimation error. In section IV, robustness
against model errors of the MHE in both frameworks is studied
through the proposed simulation example.

II. PRELIMINARIES
A. Notations

The Euclidean norm of a vector v is denoted by ||v||. For
a given matrix Q and vector v, we define ||v||2Q =vQv. The
maximum and minimum eigenvalue of a matrix Q will be
respectively denoted by Ag** and )L(’)”i". A function f(x) is
said to be locally Lipschitz with respect to its argument x if
there exists a positive constant L} such that || f(x") — f(x")| <
Flx" —x"||, for all x" and x" in a given region of x and L}
is the associated Lipschitz constant. A continuous function
¢ :[0,a) — [0,00) is said to belong to class K if it is strictly
increasing and satisfies ¢(0) = 0. A function B(r,s) is said to
be a class-KL function if, for each fixed s, B(r,s) is a class-
K function with respect to r and, for each fixed r, B(r,s) is
decreasing with respect to s and B(r,s) — 0 as s — oo.

B. Model of the System: State and Measurement Equations
The considered autonomous system is modeled by the
nonlinear discrete-time equations:

X1 = f() Fwe, v = h(xe) + v )]



where x; € R™ is the state vector of dimension ny, y; € R is
the measurement vector, wy, € R is the process noise, vy € R™
is the measurement noise and k € N is the time index.

C. Formulation of the Moving Horizon Estimator (MHE)

Let us consider now the generic formulation of the Moving
Horizon Estimator (MHE). Assume that the state vector xi
has to be estimated at instant k > N using the latest N + 1
measurements collected within the “sliding horizon” [k— N k|:

Ve n=0rN Yi_ns1 vI)". Denote £ N[ @n a priori
estimate of x;_y and £;_yy; an a posteriori estimate, or shortly
an estimate, of x;_y, computed before and after the acquisition
of measurement y; respectively.

The MHE in both deterministic and stochastic frameworks can

be described by the following generic formulation:

. . - 1 o k
. min Ne Ji (xka\ka {Wk7N+i|k}§V:0 Jk,N‘k,yka) (2a)
RNk Dk Nilk Fimo 5 N-1 )

Jo = |Be-ni —??;;N\kHPWL )y HWk—NJri\k ‘
i=0 Q
N 2
+) HYk—N+i —h(feNi) HR (2b)
i=0

sot BNtk = S Genpig) T We-nips Vi€ [0,N 1] (20)

ik € X, Wiy yip € W, Vi€ [0,N 1] 2d)

Denote ()elth\k’{wlifNH\k}?fzf)l) the optimal sol.uti.on O.f the
problem (2) computed at instant k. The a priori estimate
at the beginning of the hF)rizon )E,;N‘k is computed u§ing
(xz_N_l‘k_l,wZ_N_ l\k—l) given by the MHE at ‘the previous
instant k — 1 and (2c¢). P, Q and R are positive definite
weight matrices. The estimate of x; computed at instant k
given by the MHE is denoted by £, and is computed using
(’EZ—N\ o N i k}fi ) propﬁlgatf:d thr9ugh the state eq}lation
(2¢). For k < N, the formulation is similar to (2) but with the
increasing horizon equal to k at each instant k instead.

III. DIFFERENCES BETWEEN MHE IN DETERMINISTIC
AND STOCHASTIC FRAMEWORKS

A. Assumptions

As previously stated, the main difference between MHE
formulations in both frameworks lies in the representation of
uncertainties and the underlying assumptions. In the determin-
istic framework, the initial state x;_p at the begining of the
horizon, the process noise wy and the measurement noise vy are
considered as deterministic variables of unknown characteris-
tics taking their values in known compact sets [5][6]. While
in the stochastic framework as in [2][7][8], these parameters
are considered as random variables and assumptions on their
statistics are made. These two different main assumptions also
impact the way other design parameters are tuned in the MHE
algorithm.

B. Parameter tuning

The main parameters of the MHE algorithm are the weight
matrices P, Q,R used in the cost function (2b).
In the stochastic framework, these matrices are usually defined
as Q=0 ! and R=R~!, where Q and R are the process noise
and the measurement noise covariance matrices respectively.

The matrix P is defined as the inverse of the a priori error
covariance matrix P,_ 1,\,‘ x Which should account for information
neglected before the horizon of MHE. Therefore P INV( is
usually updated using the Extended Kalman Filter equations
[7] or sampling-based filters [8].

In the deterministic framework, the work of [5][6] proposes
to define the weight matrix P as a constant matrix such as
P = pI, where p € R"™ and I, is the identity matrix of
dimension n,. The choice of the value for this parameter p
is constrained by stability conditions, as it will be discussed

in the next section.

C. Stability of the Dynamics of the Estimation Errors

Let us introduce first the definitions concerning the stability
of the dynamics of the estimation errors of an estimator.

Definition 1: (Robust Global Asymptotic Stability)
Denote £, an a priori initial estimate. The dynamics of
the estimation error (£; —x;) for the system (1) Vk € N is
Robustly Globally Asymptotically Stable (RGAS) iff Vxo € X,
Viy € X, Ywh ! € WK and WE € VK1, there exist a class-KL
function o and class-K functions 68, and 6, such that Vk € N

1k — el < @[5 —xo]|” &)+ 8 ([P + 8u(|[951)-

Definition 2: (Observability in N + 1 steps) Define the
observation map of the system (1) on a window of length

N+1 by hn)
R(f" N (x—N))

Flaenwiy) = : 3)
ho f¥-1 00 Y (xi_y)

where o denotes function composition and f™i(x;) = f(x;) +
w; = xi+1. Denote also
k—N-+i : ,

PN () = frorton o AN (), i€ [N =1] (@)
The system (1) is said to be observable in N+ 1 steps if this
condition is satisfied: V(x,x”) € X2, there exists a K-function
¢(-) such that

Ol ="I?) < IF (', Onnt) = F (" Ouvsct )1 (5)

Let us consider now the work in the literature concerning the
stability of the dynamics of the estimation errors for nonlinear
MHE in both frameworks.

1) In Stochastic Framework: It is proven in [7] that the dy-
namics of the estimation errors of the MHE in this framework
is RGAS if the system (12) is observable in N+ 1 steps and
the term H)?k, Nk — X N kHP which is called an “approximated”
arrival cost in [7] is lower than the “exact” arrival cost which
is equal to the sum of the cost function concerning every
measurements from k=0 to k—N —1, i.e. y](;*N 1. As stated
in [5], this condition is difficult to be used in practice since
the exact arrival cost must be computed at each instant which
leads to large computational effort. Despite this difficulty to
cope with this stability condition in practice, MHE formulation
in the stochastic framework has been widely used ans studied
in many works [1][8][9][10].



2) In Deterministic Framework: It is shown in [5] that
the dynamics of the estimation errors of the MHE in the
deterministic framework is RGAS if the weight matrix P is
adequately chosen. An adequate P can be calculated if the
system (1) satisfies the following assumptions:

(A1) Xis aconvex compact set, W and V are compact sets with
0€ W and 0 € V. Define r,, = max |wl, r, = ma{/(HvH.
The initial state x is such that, For any possible )seequence
of process noises {wy}, the system trajectory {x;} lies in
the convex compact set X, Vk

f and h are € functions with respect to x on X. f and
h are therefore also locally Lipschitz of constants L’} and
Lj, respectively.

The system (1) is observable in N+ 1 steps

The system (1) has finite sensitivity, i.e. the minimum
of the class-K function ¢(-) in (5) exists. Denote & the
sensitivity parameter of the system (1) defined by

(Il —x"]1%)

=P

(A2)
(A3)

(A4)
(AS5)

0= >0 (6)

(! W) EX2 1! !
Assumption (AS5) ensures that a variation of the state vector
at the beginning of the horizon x;_y induces a variation in
the observation map F (x;_y,w} ) which corresponds to the
measurement sequence y’,j_N in case of zero measurement
noise. The larger 6 is, the more observable the system is
[6] (the smaller the number of the measurements needed for
building the estimate).
The theorem on the convergence of the estimation errors of
the MHE is proposed in [5] for P = pI,, with p € R™ as
follows:

Theorem 1: For a discrete-time nonlinear system under
bounded additive noises as in (1) satisfying assumptions (Al)-
(AS), the dynamics of the estimation errors of the MHE
designed in the deterministic framework defined in (2) is
RGAS if the design parameter p is chosen such that
(L})?c2p

cip+—
1P P+C35

where ¢, ¢y and c3 are suitable positive constants.

<1 )

This theorem provides a stability condition that is tractable for
practical use of MHE in the deterministic framework. However
it would require the explicit expression of the constants ¢y, ¢
and c3 which were not provided in the literature.

These expressions are given here for the case of diagonalizable
matrices Q and R (see details in appendix A).

1 =6/A4", ¢y =12, c3 =228"/3 (8)

IV. ROBUSTNESS ASSESSMENT OF MHE AGAINST MODEL
ERRORS: CASE STUDY

As a case study, we consider a problem of space debris
trajectory tracking during atmospheric re-entry on Earth from
measurements provided by a radar ground station. For the
sake of simplicity, a simplified one dimensional problem is
considered as presented in figure 1. In this problem, the

/\S [¢] 5 10 15 20
te)

Fig. 1: Space Debris Trajectory in a 1 dimensional case, D: debris and S:
radar station (left). Evolutions of the position of the simulated trajectories at
each instant in minimum, mean and maximum (right).

acceleration of the debris is governed by gravitational and
aerodynamic drag forces. This latter depends on a parameter
B(t) (ballistic coefficient) which is unknown and has high
variation with respect to time, which makes it difficult to
model. This estimation problem is therefore subject to high
model errors which can even lead to filter divergence.

A. Simulation of Real Trajectories and Measurements

Monte Carlo simulations of 100 trajectories of the debris

during 20 s starting from an altitude close to 70 km have been
performed assuming a spherical debris, with a varying f(t),
as done in [3]. The minimum, the mean and the maximum
of the altitude of the debris at each instant among all the
simulated trajectories are shown in figure 1. Radar measure-
ments associated to these trajectories have been computed.
In this simplified one dimensional problem, they consist in
the distances between the debris and the radar ground station.
The evolution of the ballistic coefficient () of the debris is
supposed to be unknown to the estimators, which would be
the case in reality. This allows to assess the robustness of the
estimators with respect to model errors.
The performance of the following estimators will be studied:
the Extended Kalman Filter (EKF), the Unscented Kalman
Filter (UKF), the Regularized Particle Filter (RPF) and the
Moving Horizon Estimators (MHE) in the deterministic frame-
work and in the stochastic framework.

B. Estimation Model

Define as x; = (rz, vy, azk)T the state at instant k that
has to be estimated. To derive an estimation model for the
estimators, let us assume that § is constant over a sampling
period 7. The following state equation is obtained [11]:

T2 %
1L < 6
X1 =) +we=1¢ T, | 5T T2 | fatwe 9)
2
0 0 1 T,

2a .
where fzk £ dz(tk)|ﬁ:cst = (_CZVZk + TZk)(aZk +gE)’ with 8E

Z
. S .
the Earth gravity constant, and wis a modeled as a discrete-
time zero-mean truncated gaussian white noise of covariance



Estimator ARMSE(7,) (m)
V&l =15 [ VaTh, =13
EKF 5.90 7.73
UKF 5.91 7.70
RPF 7.81 X
MHE deter. 8.22 8.31
MHE sto. 6.45 6.38

TABLE I: ARMSE for each estimator for the two values of G,

matrix Q. This matrix can be parameterized as Q = 2(T;).g,
where the matrix 2(T;) can be found in [11] and the scalar
G, > 0 should account for both discretization error and model
errors, from the fact that § is not constant over a sampling
period.

The measurement equation is simply y; = r;, +v; where the
measurement noise v, is modeled as a zero-mean truncated
Gaussian white noise of covariance R = 10> m?.

C. Tuning of the Estimators

For each run, the following parameters are given to each
estimator. The sampling period of the estimator 73 = 0.1 s is
chosen which is equal to the period of radar measurements.
From simulated trajectories, we know that g, should be chosen
such that /G, Ty = 15 m/s? to capture the variation of 8 during
the sampling period for the first 10 seconds of the trajectories
and that g, should be chosen such that \/g,T; = 1.5 m/s’ to
capture the variation of 8 over a sampling period during the
last 10 seconds of the trajectories. To study the robustness
of the estimators against bad process noise tuning, §, will be
considered constant over the whole trajectory and these two
values will be tested for the estimators to analyze their perfor-
mance. Since for the MHESs in both frameworks constraints can
be imposed during the optimization, it is supposed that their
estimate £ € X where X £ ([0, 100] km x [—10000, 10] m/s x
[~20,2000] m/s?). Concerning the process noise estimate, to

have less number of optimization parameters, it is supposed
T
2

T;
) R

is the only process noise parameter to be estimated at the
instant k. The horizon length N = 6 is chosen. For the MHE in
the deterministic framework, p=5- 10~? is chosen, allowing
(7) to be verified, and stability to be guaranted. More details
on the calculation of this value for p can be found in [11], as
well as on tuning parameters for the UKF and RPF used as
comparison.

that Wy = Wa, x Where W, x € [—40,40] m/s*

D. Performance Analysis

Let us first define the Root Mean Square Error (RMSE)
and the Average Root Mean Square Error (ARMSE) of the i
component of the estimate £;

& =) X RMSE(%;
RMSE (%) = | ¥ (i =) , ARMSE(%;;) = 275 (Fi) 10)
neM Nir k=0 kf+]

where M is the set of indexes of the non-divergent runs, Ny
the number of its elements and k¢ is the discrete-time index
of the final instant ;. The ARMSE is defined as the RMSE

Model with a./ v@.T; = 15 m/s?

Model with a./ V7. T, = 1.5 m/s*

—EKF

25 | UKF
—RPF
—MHE deter.
‘J‘ ——MHE sto.

10
t(s) t(s)

Fig. 2: RMSE for each estimator for the two values of g,

average over all time instants. The RMSE of the position
estimate 7, for both process noise cases are presented in figures
2. The ARMSE of 7, are presented in Table 1.

E. Result Analysis

We observe that when the process noise is adequately

chosen, the EKF and the UKF provide the smallest estimation
errors. However, when the dynamics of the system is not well
known, they may provide high errors and therefore should not
be used. The RPF is very sensitive to process noise value and
did not converge when high model error are considered.
On the other hand, the MHEs are more robust against model
errors induced from a bad choice of the process noise parame-
ter. We observe also that the MHE in the stochastic framework
provides a peak of errors when the process noise parameter
is not well chosen, as for other stochastic estimators. This
is not the case for the MHE in the deterministic framework.
Even though it provides an overall estimation error higher
than the MHE in the stochastic framework, the MHE in the
deterministic framework is the only estimator that provides the
same level of accuracy for any process noise parameter choice
and is therefore the most robust for this tracking problem.

V. CONCLUSIONS AND PERSPECTIVE

In this paper, a discussion has been proposed on the cat-

egorization of the formulations of the nonlinear MHE of the
literature. Two frameworks have been considered, stochastic
and deterministic, depending on the assumptions used to model
uncertainties relative to noises and optimization parameters.
The MHE in the stochastic framework proposed to use a
weight matrix on the a priori initial state at the beginning of the
horizon calculated and propagated using EKF equations. This
choice is easy to implement, and has been shown in many
works to be efficient for state estimation but conditions to
guarantee convergence of the estimates may be difficult to cope
with. In the MHE algorithm considered in the deterministic
framework, this weight matrix can be more easily defined
to satisfy a stability condition. To make it directly usable in
practice, explicit formulation of all the terms involved in this
condition have been provided in this paper, completing the
stability theorem proposed in the literature.
This paper also proposed an assessment of the robustness
of these estimators with respect to model errors, through a
simulation example, showing the great robustness of both
MHESs, and especially the deterministic one.



APPENDIX

We would like to have expressions of the constants ¢y, ¢;
and c3 for the convergence of the estimation errors of the
MHE defined in (2) when the weight matrix on the arrival
cost P = pl, and Q and R are symmetric positive definite
diagonalizable matrices. Following [6], we calculate an upper
bound and a lower bound on the optimal cost J; defined as
the cost corresponding to the optimal estimate £} Nl ie. Jy =
J(E le,)ﬁkiN‘k, y’,;N). Then, combining the upper bound to
the lower bound gives the dynamics of the estimation errors
and of the estimated process noise sequence.

Using the definition of the observation map in (3), the cost
function becomes

2 N-1
N - N 2
Je = pka—N\k_xka\kH + Z;) HWk—N+i\k||Q
1=
k . 1 |1
+ Hyka - F(xka\kaWk,N‘k) HR (11)
Let us define as in [6] Vx,_y € X, Vwenyi € W, i =
0,1,....N—1
VN VN Ty
OWeN  OWrN11 W1
Dy(x_y) & : : ) : (12)
I AL 9%
OWk-N  OWk—N41 oW1
Using (4), we have
0 0
I(ho fii™)
oWr_N 0
Dy (xi_y) = (13)
'w":*] 'w":*]
a(hof(;;N) a(hof(&\;N)
IWeN oW1
A
AV— max HD ) gt 0, (14)

Define k such that l_c £ max k; where k; > 0 are suitable

i=1,...N
scalars such that k; ||wf N1 >
k N+i—1 k N-+i—1
d(ho fiy o )‘ d(ho [y o |
k— N+ 1 f—NFi-1 = k— N+ T 105,nx1 (15)
a k,N 1— Wi N 8 ka i— X

The constant k; exists as we are dealing with compositions
of €? functions. Although it may not be easily computed,
its value only affects the asymptotic bound on the estimation
error but not its stability.

Upper Bound on the Optimal Cost J;

Since J}, is the optimal solution of (2), it is smaller than the
cost calculated at the real state x;_y with zero process noise
0, nx1. In other words,

0 — P k—N 2
Je < pl-n =Xyl + %% — F (XN, 0n,n 1) R

2
<PHXk N—%_ N|kH + AR ka—F(kaN,Oanxl)H

According to [6], the last term on the r.h.s of the above
equation follows

2
Hyk N F(xk,N,Oanxl)H SC,%[e,N (16)

where

k [ININ+1)(2N+1
CAle,N = A\Frw+\/1mrv+f %ri (17)

Therefore, we have an upper bound on the optimal cost J; as
follows

T < plxi—n = fe-np—r ||2 + AR Chre N (18)

Lower Bound on the Optimal Cost J;

Denote, for i = 0,...,N, X_y any estimate of x;_y and
wf zlv any sequence of estimated process noises from k— N
to k— 1. We would like to compute the cost in (11) for any
solution ()ek,N,wij}v), not necessarily computed at k. Using

the triangle inequality proposed in [6], one obtains

|2
2 k k-1
+3Hyk7N*F(xk—N,Wk N

|F (xk—n, 0n, 31 ) — F (Rk—n, 0n 1)

<3 HF(xk—Naoanxl) 7y’,§7N‘
2
+3 HF()?k—mWi:}v) - F(fk—N,Oanm)H
Using (5) and (16) and the fact that R is diagonalizable, the

third term of the cost function (11) becomes

2 1 .
A7 = F e, O | = 487 (50 Uk = 5 IP)

3
2 . k=1 . 2
—ChleN — HF(xkaa Wi_n) — F(Xk—n, 0n,vx1) H ) (19)

According to [6], we have

2
HF(xAk—N7W]1§:11v) — F (%N, 0p,nx1) H

< (Ao + \/N(N+l)6(2NH)ri)2

Hence, (19) becomes

_ 2 1 R
A7 = F s O | > AR 20 — 2w )

3
N+1)2N+1
~Caten — (AwVNry+ \/ ( )6( R
Using the trlangle inequality, we obtain
PHXk N — % Nlk— 1||
1 N 2 N 2
5P e =i nlI = P |Poe-n — B nig—1 ]| (21)
Again, since Q is diagonalizable we can write
—1
): il 227 Y P @2
i=0

Deﬁne by ezile .é Xi—N .—JE;;le the estirpation error asso-
ciated to the optimal estimate of x;_n given by the MHE

computed at instant k and the associated optimal process



noise sequence {w Pl N‘k} Remark that Z Hwk N+z\kH

we iiN\kH . Combine (20)-(22) to have the lower bound:

o 1 o 2 o
Wiz gl -l ‘xk—N\kH @y
1. 2 2
where
k INN+1(2N+1
= Chien + (AwVNry + 5\ NWFNEN+T) )6( )rvzv)z (24)

Now, let us combine the upper and the lower bounds on the

optimal cost to have the dynamics of the estimation errors
. ) oAkl

e;_y and the associated estimated process noise w°;_y.

Dynamics of the Estimation Errors of the MHE

Combining the upper bound in (18) to the lower bound in
(23), and using (6), one gets:

p li’{l”’l
(3+75)

~ k=1 |2
W k—Nlk

ek N‘kH +A/

<2p ka—N — Xk-Njk-1 H +¢ 25)
where = M Chren + AR C & (26)
Now, using the Lipschitz continuity of f, we have

Jreor =

2
= Hf(xkafl)_f(xz—N—l\k—l)_WIC;—N—I\k—l"i_Wk*N*lH
3 x\2 || o 2 3||lwe 2 32
(LP)" |l ek—n—1—1|| +3 || Pen—1p—1]| +3r%

Replace (27) into (25) to get

p lﬁun
(3+%)

2p <3(L)}')2HEZN1|1¢1H +3HWIC27N71|k71H +3r»2v>+02

IN

27

R

- N|k’

_ 2
© , We obtain

Usi o 2 < k-2
SINg Wi N_qk—1|| = ||W k-N—1Jk-1

5 2
€r—N—1[k—1 H

o 1
Hek7N|kH < W(up@?)z’

R 8

2 2 2
+12p‘ S ‘H +12pr2 4 26%)

- 1 ) 2
W k_N|k H ;me(6P(Lf) Hekafl\kle

2
~ok—2 2 2
w k’N’”k’IH +6pri,+c¢°)

In other words, the stability theorem 1 proposed in [5] is
obtained with Hek le” < &_n and Hw e le” < Wy—n

where the sequences {&} and {w.} are generated by

the linear system (@ ékH)T = A(p, ). (ax ék)T

B(p,8).(r} r%)T with

cip ci(L})?p
a8 = ( L
cap/(p+c38) co(L})*p/(p+c36)
“+cs5 Co
B(p,S c4p
(p-9) (<C7p+cs>/<p+c36> o/ (p+c39)
where thanks to the calSulations in this section, we find
1= )J”’"’ =12, ¢c3 = flR’”"”. The expressions of cq,...,co

can be computed using the expression of ¢?. To compute ¢,
one has to compute the values of A,, in (14) and k; in (15).
One way to compute A,, when an analytical expression of D,,
is available consists in making hypotheses on the ranges of
possible values of the state and the process noise. To compute
ki, remark that k; is in fact a Lipschitz constant of the function

a(ho M) jawk

expression of the Jacobian matrix of d(ho ]‘iwk’N )/owt~), and
then making hypotheses on the ranges of possible values of
the state and the process noise to compute its norm, i.e. the
Lipschitz constant.

. It can be computed using an analytical
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