Macroscale modelling of multilayer diffusion: Using volume averaging to correct the boundary conditions

Abstract : This paper investigates the form of the boundary conditions (BCs) used in macroscale models of PDEs with coefficients that vary over a small length-scale (microscale). Specifically, we focus on the one-dimensional multilayer diffusion problem, a simple prototype problem where an analytical solution is available. For a given microscale BC (e.g., Dirichlet, Neumann, Robin, etc.) we derive a corrected macroscale BC using the method of volume averaging. For example, our analysis confirms that a Robin BC should be applied on the macroscale if a Dirichlet BC is specified on the microscale. The macroscale field computed using the corrected BCs more accurately captures the averaged microscale field and leads to a reconstructed microscale field that is in excellent agreement with the true.microscale field. While the analysis and results are presented for one-dimensional multilayer diffusion only, the methodology can be extended to and has implications on a broader class of problems.
Type de document :
Article dans une revue
Applied Mathematical Modelling, Elsevier, 2017, 47, pp.600 - 618. 〈10.1016/j.apm.2017.03.044〉
Liste complète des métadonnées

https://hal-centralesupelec.archives-ouvertes.fr/hal-01652588
Contributeur : Catherine Kruch <>
Soumis le : jeudi 30 novembre 2017 - 14:23:05
Dernière modification le : jeudi 4 janvier 2018 - 17:37:32

Identifiants

Citation

E.J. Carr, I.W. Turner, Patrick Perre. Macroscale modelling of multilayer diffusion: Using volume averaging to correct the boundary conditions. Applied Mathematical Modelling, Elsevier, 2017, 47, pp.600 - 618. 〈10.1016/j.apm.2017.03.044〉. 〈hal-01652588〉

Partager

Métriques

Consultations de la notice

20