J. Aschoff, A survey on biological rhythms, Biological Rhythms, pp.3-10, 1981.

A. Goldbeter, Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour, 1997.

, Computational approaches to cellular rhythms, Nature, vol.420, issue.6912, pp.238-245, 2002.

M. Feinberg, Lectures on chemical reaction networks, 1979.

V. Chellaboina, S. P. Bhat, W. M. Haddad, and D. S. Bernstein, Modeling and analysis of mass-action kinetics, Control Systems, IEEE, vol.29, issue.4, pp.60-78, 2009.

M. R. Roussel, The use of delay differential equations in chemical kinetics, The Journal of Physical Chemistry, vol.100, issue.20, pp.8323-8330, 1996.

I. R. Epstein, Delay effects and differential delay equations in chemical kinetics, International Reviews in Physical Chemistry, vol.11, issue.1, pp.135-160, 1992.

C. J. Roussel and M. R. Roussel, Delay-differential equations and the model equivalence problem in chemical kinetics, Phys. Can, vol.57, pp.114-120, 2001.

M. Mincheva and M. R. Roussel, Graph-theoretic methods for the analysis of chemical and biochemical networks. i. multistability and oscillations in ordinary differential equation models, Journal of mathematical biology, vol.55, issue.1, p.61, 2007.

C. T. Baker, C. A. Paul, and D. R. Willé, Issues in the numerical solution of evolutionary delay differential equations, Advances in Computational Mathematics, vol.3, issue.3, pp.171-196, 2013.


G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations, Ordinary Differential Equations and Integral Equations, vol.125, pp.183-199, 2000.

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, issue.269, 2001.

R. J. Field and R. M. Noyes, Oscillations in chemical systems. IV. limit cycle behavior in a model of a real chemical reaction, The Journal of Chemical Physics, vol.60, issue.5, pp.1877-1884, 1974.

H. U. Unal, I. Boussaada, and S. Niculescu, Further remarks on delay dynamics in oregonator models, 12th IEEE International Conference on Control & Automation, 2016.

K. Sriram and S. Bernard, Complex dynamics in the oregonator model with linear delayed feedback, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.18, issue.2, p.23126, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00371750

J. J. Tyson, Analytic representation of oscillations, excitability, and traveling waves in a realistic model of the belousov-zhabotinskii reaction, The Journal of Chemical Physics, vol.66, issue.3, pp.905-915, 1977.

I. R. Epstein and Y. Luo, Differential delay equations in chemical kinetics. nonlinear models: The cross-shaped phase diagram and the oregonator, The Journal of chemical physics, vol.95, issue.1, pp.244-254, 1991.

M. R. Wright, Fundamental chemical kinetics: an explanatory introduction to the concepts, 1999.

K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay differential equations using dde-biftool, ACM Transactions on Mathematical Software (TOMS), vol.28, issue.1, pp.1-21, 2002.