D. Manolakis, D. Marden, and G. Shaw, Hyperspectral image processing for automatic target detection applications, Lincoln Laboratory Journal, vol.14, issue.1, pp.79-116, 2003.

M. Pourahmadi, Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, vol.86, issue.3, pp.677-690, 1999.
DOI : 10.1093/biomet/86.3.677

P. J. Bickel and E. Levina, Regularized estimation of large covariance matrices, The Annals of Statistics, vol.36, issue.1, pp.199-227, 2008.
DOI : 10.1214/009053607000000758

A. J. Rothman, E. Levina, and J. Zhu, Generalized Thresholding of Large Covariance Matrices, Journal of the American Statistical Association, vol.104, issue.485, pp.177-186, 2009.
DOI : 10.1198/jasa.2009.0101

J. Fan and R. Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of the American Statistical Association, vol.96, issue.456, pp.1348-1360, 2001.
DOI : 10.1198/016214501753382273

G. Cao and C. Bouman, Covariance estimation for high dimensional data vectors using the sparse matrix transform, Advances in Neural Information Processing Systems 21, pp.225-232, 2009.

W. B. Wu and M. Pourahmadi, Nonparametric estimation of large covariance matrices of longitudinal data, Biometrika, vol.90, issue.4, p.831, 2003.
DOI : 10.1093/biomet/90.4.831

J. Z. Huang, N. Liu, M. Pourahmadi, and L. Liu, Covariance matrix selection and estimation via penalised normal likelihood, Biometrika, vol.93, issue.1, pp.85-98, 2006.
DOI : 10.1093/biomet/93.1.85

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological ), vol.58, issue.1, pp.267-288, 1996.

E. J. Kelly, An adaptive detection algorithm Aerospace and Electronic Systems, IEEE Transactions on, vol.23, issue.1, pp.115-127, 1986.

P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye, Gist : General iterative shrinkage and thresholding for non-convex sparse learning, 2013.