G. Chen and F. Chen, Growing Phototrophic Cells without Light, Biotechnology Letters, vol.161, issue.9, pp.607-623, 2006.
DOI : 10.1016/j.bbadis.2004.12.006

Y. Lee, Algal Nutrition - Heterotrophic Carbon Nutrition, Handbook of Microalgal Culture Biotechnology and Applied Phycology, pp.116-140, 2004.
DOI : 10.1002/9780470995280.ch7

H. Qiao, G. Wang, and X. Zhang, GXNN01 (CHLOROPHYTA) WITH THE PROPERTIES OF HETEROTROPHIC AND MICROAEROBIC GROWTH, Journal of Phycology, vol.23, issue.5, pp.1153-1162, 2009.
DOI : 10.1016/B978-0-12-372180-8.50042-1

X. Shi, X. Zhang, and F. Chen, Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources, Enzyme and Microbial Technology, vol.27, issue.3-5, pp.312-318, 2000.
DOI : 10.1016/S0141-0229(00)00208-8

J. Ogbonna, H. Masui, and H. Tanaka, Sequential heterotrophic ? autotrophic cultivation ? an efficient method of producing Chlorella Biomass for health food and animal feed, Journal of Applied Phycology, vol.9, issue.4, pp.359-66, 1997.
DOI : 10.1023/A:1007981930676

T. Ogawa and S. Aiba, Bioenergetic analysis of mixotrophic growth inChlorella vulgaris andScenedesmus acutus, Biotechnology and Bioengineering, vol.44, issue.5, pp.1121-1132, 1981.
DOI : 10.1099/00221287-102-1-179

M. Orus, E. Marco, and F. Martinez, Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production, Bioresource Technology, vol.38, issue.2-3, pp.179-184, 1991.
DOI : 10.1016/0960-8524(91)90151-9

J. Ogbonna, E. Ichige, and H. Tanaka, Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis, Applied Microbiology and Biotechnology, vol.58, issue.4, pp.532-538, 2002.
DOI : 10.1007/s00253-001-0901-8

Y. Liang, N. Sarkany, and Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnology Letters, vol.84, issue.7, pp.1043-1049, 2009.
DOI : 10.13031/2013.20272

R. Craggs, P. Mcauley, and V. Smith, Wastewater nutrient removal by marine microalgae grown on a corrugated raceway, Water Research, vol.31, issue.7, pp.1701-1707, 1997.
DOI : 10.1016/S0043-1354(96)00093-0

C. Monteiro, P. Castro, and F. Malcata, Metal uptake by microalgae: Underlying mechanisms and practical applications, Biotechnology Progress, vol.51, issue.2, pp.299-311, 2012.
DOI : 10.1016/j.marpolbul.2005.06.008

B. Clément-larosière, F. Lopes, A. Gonçalves, B. Taidi, and M. Benedetti, concentrations and light intensities, Engineering in Life Sciences, vol.101, issue.5, pp.509-519, 2014.
DOI : 10.1016/j.biortech.2010.02.088

S. Hong and N. Lee, Growth of Spirulina platensis in effluents from wastewater treatment plant of pig farm, J Microbiol Biotechnol, vol.3, pp.19-23, 1993.

M. Kim, W. Chung, M. Lee, J. Lee, S. Ohh et al., Kinetics of removing Nitrogenous and Phosphorus compounds from swine waste by growth of microalga, Spirulina platensis, J Microbiol Biotechnol, vol.4, pp.455-461, 2000.

M. Kim and R. Smith, Effect of ionic Copper toxicity on the growth of green Alga, Selenastrum capricornutum, J Microbiol Biotechnol, vol.11, pp.211-216, 2011.

B. Amor-ben-ayed, H. Taidi, B. Ayadi, H. Pareau, D. Stambouli et al., Effect of magnesium ion concentration in autotrophic cultures of Chlorella vulgaris, Algal Research, vol.9, pp.291-296, 2015.
DOI : 10.1016/j.algal.2015.03.021

URL : https://hal.archives-ouvertes.fr/hal-01237340

B. Amor-ben-ayed, H. Taidi, B. Ayadi, H. Pareau, D. Stambouli et al., Magnesium Uptake by the Green Microalga Chlorella vulgaris in Batch Cultures, Journal of Microbiology and Biotechnology, vol.26, issue.3, pp.503-510, 2016.
DOI : 10.4014/jmb.1507.07039

URL : https://hal.archives-ouvertes.fr/hal-01305976

S. Sarma, R. Das, S. Brar, Y. Bihan, and G. Buelna, Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste, Energy, vol.78, pp.16-22, 2014.
DOI : 10.1016/j.energy.2014.04.112

L. Vernon and G. Seely, The Chlorophylls. (1th Edition) Academic press, p.436, 1966.

R. Porra, The assay of chlorophylls a and b converted to their respective magnesium-rhodochlorin derivatives by extraction from recalcitrant algal cells with aqueous alkaline methanol: Prevention of allomerization with reductants, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1015, issue.3, pp.493-502, 1990.
DOI : 10.1016/0005-2728(90)90083-G

N. Franklin, J. Stauber, S. Markich, and R. Lim, pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.), Aquatic Toxicology, vol.48, issue.2-3, pp.275-289, 2000.
DOI : 10.1016/S0166-445X(99)00042-9

M. Ma, W. Zhu, Z. Wang, and G. Witkaamp, Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid, Aquatic Toxicology, vol.63, issue.3, pp.221-228, 2003.
DOI : 10.1016/S0166-445X(02)00179-0

J. Rocha, J. Gracia, and M. Henriques, Growth aspects of the marine microalga Nannochloropsis gaditana, Biomolecular Engineering, vol.20, issue.4-6, pp.237-242, 2003.
DOI : 10.1016/S1389-0344(03)00061-3

Y. Ting, F. Lawson, and I. Prince, Uptake of cadmium and zinc by the algaChlorella vulgaris: II. Multi-ion situation, Biotechnology and Bioengineering, vol.20, issue.03, pp.445-455, 1991.
DOI : 10.1139/b80-206

M. Wood and C. Everroad, Measuring growth rates in microalgal cultures, 2005.