n-GaP/p-Si heterojunction solar cells fabricated by PE-ALD - CentraleSupélec Access content directly
Journal Articles physica status solidi (c) Year : 2017

n-GaP/p-Si heterojunction solar cells fabricated by PE-ALD


Significant progress in photovoltaic conversion of solar energy can be achieved by new technological approaches that will improve the efficiency of solar cells and make them appropriate for mass production. A new technological approach for the growth of III-V compounds on Si substrates using low temperature plasma-enhanced atomic layer deposition (PE-ALD) is explored in the paper. This technique, which consists of alternatively changing the phosphorus and gallium atom source flows providing the growth of one monolayer by cycle, was developed for the growth of GaP films on Si substrates in a standard PECVD setup at 380 C using PH 3 and TMG (Trimethylgallium) as sources of III and V atoms. First (n)GaP/(p)c-Si anisotype heterojunction solar cell structures fabricated by PE-ALD exhibit open circuit voltage values similar to that obtained for (n)a-Si:H/(p)c-Si heterojunctions fabricated using the same (p)c-Si substrates. However (n) GaP/(p)c-Si solar cells demonstrates a potential to extend a high quantum efficiency in the short wavelength region due to lower absorption losses in the GaP emitter layer.
Fichier principal
Vignette du fichier
Gudovskikh_pssc_2017.pdf (1014.22 Ko) Télécharger le fichier
Origin : Explicit agreement for this submission

Dates and versions

hal-01672079 , version 1 (19-03-2020)



Alexander S. Gudovskikh, A.V. Uvarov, Ivan A. Morozov, Artem Baranov, D. A. Kudryashov, et al.. n-GaP/p-Si heterojunction solar cells fabricated by PE-ALD. physica status solidi (c), 2017, ⟨10.1002/pssc.201700150⟩. ⟨hal-01672079⟩
74 View
374 Download



Gmail Facebook Twitter LinkedIn More