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Abstract

In many questions of signal processing, it is important to use the concepts of instantaneous amplitude

or phase of signals. This is especially the case in communication systems with amplitude or frequency

modulation. These concepts are often introduced empirically. However, it is well known that the correct

approach for this purpose is to use the concept of analytic signal. Starting from this point, we show

some examples of contradictions appearing when using other definitions of instantaneous amplitude or

frequency that are commonly admitted. This introduces the problem of characterizing pure amplitude-

modulated or pure phase-modulated signals. It is especially shown that whereas amplitude modulated

signals can be characterized by spectral considerations, this is no longer the case for phase modulated

signals.
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I. INTRODUCTION

INSTANTANEOUS amplitude and phase are basic concepts in all the questions dealing with modulation

of signals appearing especially in communications or information processing. Let us remember that a

purely monochromatic signal such as a cos(ωt + φ) cannot transmit any information. For this purpose,

a modulation is required, and one of the simplest possible to introduce is amplitude modulation. Let

m(t) be a positive function corresponding to the information o be transmitted. By multiplying the carrier

frequency signal cos(ω0t) by m(t), we obtain the signal

x(t) = m(t) cos(ω0t) (1)

and it is commonly admitted that is m(t) the instantaneous amplitude of the signal x(t). This appears in

many textbooks, especially in [1, p. 237]. On the other hand, the need for phase or frequency modulation

requires the definition of the instantaneous phase. By a reasoning similar to the previous one concerning

the amplitude, it is commonly admitted that the signal

x(t) = a cos(φt) (2)

has a constant amplitude a and an instantaneous phase φ(t). Furthermore, the instantaneous angular

frequency is given by the derivative of φ(t). This is a generalization of the procedure applied in the

case where the phase is linear in time or in the form φ(t) = ω0t + φ, giving the frequency . These

definitions also appear in many textbooks or papers. For example, the following is written on [2, p.

645]: The argument θ(t) in any signal having the form cos[(θ(t)] is called the instantaneous phase, and

(1/2π)d[θ(t]/dt is called the instantaneous frequency. The same definition appears, for example, in [3,

p. 480], [4, p. 260], and [5, p. 144].

Even if the previous definitions appear quite natural and are widely used in practical applications

dealing with signal modulation, we immediately note that they cannot be satisfactory. In order to make

this point clear, let us discuss a very simple example. Suppose that the function m(t) appearing in (1)

is bounded or satisfies 0 ≤ m(t) ≤ a. As a result, we have |1/a| ≤ 1. It is then possible to introduce a

unique function φ(t) satisfying

0 ≤ φ(t) ≤ π ; cos[φ(t)] = (1/a)x(t). (3)

By using this well-defined function, we obtain

x(t) = m(t) cos[ω0t] = a cos[φ(t)]. (4)

This shows that the signal x((t) can be considered frequency as well as amplitude modulated. In other

words, its instantaneous amplitude is m(t) as well as a, and moreover, its instantaneous phase is either

ω0t or φ(t).
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More generally, starting from a given signal x(t), it is possible to introduce an infinite number of pairs

[a(t), φ(t)] such that

x(t) = a(t) cos[φ(t)]. (5)

This leads to the conclusion that the definitions given previously, even if they are widely used, are

incoherent because they do not associate with a given real signal a well-defined pair of functions that

are the instantaneous amplitude and phase of x(t). Therefore, these definitions must be reformulated in

such a way that any given signal x(t) corresponds to one well-defined pair [a(t), φ(t)], allowing us to

write x(t), as in (5).

In reality, the solution of this problem is well known and explicitly introduced in [6, p. 50]. A

recent review paper on this question [7] also gives a good introduction on the discussion leading to the

standard definition of the quantities studied hereafter. Moreover, this paper contains a list of references

corresponding to the history of this problem.

The classical definition of the instantaneous amplitude and phase of a real signal is recalled in the

next section. This definition introduces the concept of a canonical pair [a(t), φ(t)], and it is therefore

interesting to find conditions ensuring that a given pair of functions a(t) and φ(t) is canonical. When the

instantaneous phase is linear, or when the signal looks like (1), it is possible to characterize a canonical pair

only from the spectral properties of the signal. This becomes much more difficult when the instantaneous

phase is no longer linear, and this especially appears for signals with constant amplitude, which are called

phase signals, which are at the foundation of phase- or frequency-modulation systems. The properties of

such signals are analyzed in the following section, and from them, we can deduce various properties of

canonical pairs. The practical consequences of these results and their extension for random signals are

finally investigated.

II. DEFINITIONS AND CANONICAL PAIRS

A. Definitions

Let us recall the classical way to define without ambiguity the instantaneous amplitude and phase of

a real signal x(t). The problem is to write x(t) as in (5) but by using a pair of functions [a(t), φ(t)]

that is in a one-to-one correspondence with x(t). For this purpose, we associate with x(t) its analytic

signal (AS) z(t) (see [6, p. 48]). It is obtained from x(t) by filtering it using a filter with the frequency

response H(ν) equal to 2 for ν > 0 and to 0 for ν < 0. Conversely, it is obvious that x(t) = Re[z(t)]

, where Re means the real part. Therefore, if z(t) is real, there is indeed a one-to-one correspondence

between x(t) and z(t). On the other hand, a complex function is an AS if its Fourier transform is zero

for negative frequencies. It is clear that this function is the AS of its real part.

January 5, 2018 DRAFT



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING ,

As z(t) cannot be a real function because its Fourier transform Z(ν) is zero for ν < 0, it can be

written as

z(t) = a(t) exp[φ(t)], (6)

where the phase φ(t) is defined modulo 2π, and a(t) is nonnegative. As a conclusion, using the AS

makes it possible to associate with any real signal a unique pair [a(t), φ(t)] called in the following the

canonical pair associated with x(t).

Definition: Let be a real signal and the canonical pair [a(t), φ(t)] associated with it. The function a((i)

appearing in this pair is the instantaneous amplitude of x((t), and φ((t) is its instantaneous phase. The

instantaneous frequency is the derivative with respect to time of φ((t).

The introduction of the AS is not at all recent, and among the principal papers in this field, we can

note [8][12]. There are some questions concerning the physical meaning of the AS, and some of them

are mentioned and discussed in [7]. Furthermore, it is shown in [13] and [14] that starting from some a

priori physical assumptions, the only possible definition of the instantaneous amplitude and phase is the

one given just above. However, it is worth pointing out that other physical conditions lead to another

definitions that are not discussed below [15].

Once the definition is given, the question that immediately follows is to characterize a canonical pair

or to show what the conditions are on a(t) and φ(t) in order to ensure that (6) is an AS, which means

that its Fourier transform is zero for negative frequencies. This is essential when verifying whether or

not the classical definitions given above are correct. In fact, there is no a priori reason for [m(t)], ω0t]

appearing in (1) or [a(t), φ(t)] appearing in (2) to be canonical.

B. Spectral Characterization of a Canonical Pair

Consider first a signal of the form (1). It corresponds to an amplitude modulation of a pure monochro-

matic signal with the carrier frequency ω0. The nonnegative function m(t) is the instantaneous amplitude

of x(t) if and only if m(t) exp(jω0t) is an AS.

Let M(ν) be the Fourier transform (FT) of m(t). As m(t) is real, M(ν) = M∗(−ν). The FT of

m(t) exp(jω0t) is, of course, M(ν − ν0) , with ν0 = ω/2π . As a result, we obtain that M(ν − ν0) = 0

for ν negative or that m(t) is the instantaneous amplitude of x(t) given by (1) if and only if M(ν) is zero

for |ν| > ν0. Physically, this means that m(t) is a low-frequency bandlimited signal. In all that follows,

we call such a signal a low-frequency(ν0) signal. Similarly, a high-frequency (B) signal is characterized

by the fact that its FT vanishes for |ν| < B.

This discussion shows that it is possible to characterize a canonical pair such as [a(t)], ω0t uniquely

by a spectral condition on a(t). Starting from this example of amplitude modulation, it was tempting
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to try to use spectral methods for the characterization of more general pairs of functions [a(t), φ(t)]

Unfortunately, we shall see that the task becomes immediately impossible.

Saying that a(t) exp[jφ(t)] is an AS is equivalent to saying that the Hilbert transform of a(t) cos[φ(t)]

is equal to a(t) sin[φ(t)] (see [6, p. 49]). It is therefore appropriate to make use of the so-called Bedrosian

theorem [16] dealing with the Hilbert transform of a product of two real functions x1(t) and x2(t). A

very simple derivation of this theorem and some extensions can be found in [17]. The main result is as

follows: Let X1(ν) and X2(ν) be the FTs of x1(t) and x1(t), respectively. If X1(ν) = 0 for ν > B and

X2(ν) = 0 for ν < B, then

H[x1(t)x2(t)] = x1(t)H[x2(t)] (7)

where H[.] means the Hilbert transform. A direct application of this result shows that if a(t) is a low-

frequency (B) signal , and cos[φ(t)] a high-frequency (B) signal, or if their spectra do not overlap,

then

H{a(t) cos[φ(t)]} = a(t)H{cos[φ(t)]}. (8)

However, this does not at all imply that

H{cos[φ(t)]} = sin[φ(t)] (9)

as stated by many authors and even recently in [7]. If (9) were true, it would also be possible to characterize

a canonical pair only by spectral considerations, as for amplitude modulation. Furthermore, as the constant

signal has an FT limited to the frequency zero, (9) would be true for any signal cos[φ(t)] without a low-

frequency component. This result would be especially attractive, suppressing all the questions discussed

in the introduction, when presenting some comments on (2). Let us now show that (9) has no reason to

be true when only spectral properties of cos[φ(t)] are introduced. For this purpose, we shall propose an

elementary counterexample of this property. It is obvious that (9) implies that

cos2[φ(t)] + sin2[φ(t)] = 1. (10)

Let x(t) be defined by

x(t) = sinc(2Bt) cos(ω0t), (11)

where sinc(x) = sin(πx)/πx , and ω0 > 2πB . As |x(t)| < 1, it is possible to introduce a phase φ(t)

uniquely defined if 0 ≤ φ(t) ≤ π and such that x(t) = cos[φ(t)] . As the FT of sinc2Bt is zero for

|ν| > B , the FT of x(t) does not contain low-frequency components because of the assumption on ω0.

Applying (9) then gives H[x(t)] sin[φ(t)], and as a consequence, x2((t) +H2[x(t)] = 1. However, it is

obvious that this equality is not correct. In fact, by applying the Bedrosian theorem, we obtain

H[x(t)] = sinc(2Bt) sin(ω0t) (12)
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and x2(t) +H2[x(t)] == sinc2(2Bt).

This shows that contrary to a common well-established idea, it is not possible to justify (9) by

introducing only spectral considerations. This point will become much clearer in the next section. In

fact, (9) implies that

z(t) = exp[jφ(t)] (13)

is an AS or that the pair[1, φ(t)] is canonical. We shall now see that this requires very specific properties

of the structure of the phase φ(t).

III. PHASE SIGNALS

A. General Structure

Phase signals are real signals with constant instantaneous amplitude. They can be expressed as (2) but

with the condition that exp[jφ(t)] is an AS. As a consequence, (9) is satisfied. For such signals, all the

information is contained in the instantaneous phase (or frequency), and phase signals are then the basic

elements of phase or frequency modulation.

The condition that exp[jφ(t)] is an AS requires very specific properties on the phase φ(t). These

properties have been analyzed in the framework of coherence problems in optics [18] but, more precisely,

in the framework of the study of analytic functions, and especially in [19, ch. 7]. We present here the

results that are the most important for our arguments without the proofs, which are out of the scope of

this discussion and can be found in [19].

The most general structure of the AS of a nonsingular phase signal is

z(t) = b(t) exp[j(ω0t+ θ)], (14)

where θ is arbitrary, ω0 is nonnegative, and b(t) is a Blaschke function defined by

b(t) =
N∏
k=1

t− zk
t− z∗k

, zk ∈ P+, (15)

where P+ is the half plane of the complex plane defined by Im(z) > 0 . The quantity ω0 is the carrier

frequency and can be equal to zero. The expression nonsingular means that the instantaneous phase of

z(t) remains finite for finite values of t. When the number N of factors in the product is not finite, there

are other constraints on the complex numbers zk due to convergence problems. Here, we avoid these

questions by assuming that N is finite. In this case, the interpretation of (15) is very simple. In order to

be an AS, the function b(t), for complex values of t, must have all its poles in the half plane Im . In

order to have a modulus equal to one, each pole must be associated with a corresponding zero symmetric

of this pole with respect to the real axis. This procedure is well known in filter theory: Stable phase
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filters have the same number of poles and zeros, and these zeros are symmetric to the poles with respect

to the imaginary axis. The stability and causality conditions imply that all the poles are in the left half

plane of the complex plane.

It is obvious that |b(t)| = 1, which implies that |z(t)| = 1. Let us now explain why z(t) is an AS. For

this, we must analyze the structure of the FT B(ν) of b(t). As N is finite, b(t) is a rational function in

t. If all the zks are distinct, we can write

b(t) = 1 +
N∑
k=1

ck
t− z∗k

, (16)

where

ck = lim
t→z∗

k

(t− z∗k)b(t) (17)

As a consequence, we have

B(ν) = δ(ν) +
N∑
k=1

Ck(ν), (18)

where Ck(ν) is the FT of ck(t − z∗k)−1. Because of the localization of z∗k in the complex plane, we

deduce that Ck(ν) = 0 for ν < 0, which implies that B(ν) = 0 for ν < 0 and ensures that b(t) is an

AS. Finally, as ω0 > 0, z(t) also is an AS. The reasoning can be extended without difficulty when some

poles zk are no longer distinct.

The phase of b(t) is, of course

φk(t) = Arg[b(t)],mod2π, (19)

and, as a result, we can say that any phase signal can be written as (2), where φ(t) must have the form

φ(t) = θ + ω0t+ φb(t),mod2π. (20)

In practice, the continuity of the phase leads to suppress the term mod(2π), and this convention is adopted

in all that follows.

This most general phase is defined by N complex parameters zk and two real parameters ω0 and θ.

Furthermore, it is obvious that the phases φk(t) are the sum of N phases of the factors appearing in the

product (15). Let bk((t) be equal to (t− zk)(t− z∗k)−1, and let φk(t) be its phase. This gives

φ(t) = θ + ω0t+
N∑
k=1

φk(t). (21)

By introducing the real and imaginary parts of zk or zk = ak + jbk, one obtains

φk(t) = 2Arctg
bk

ak − t
, −π/2 ≤ φk(t) ≤ π/2. (22)

At this step, we come back to the problem discussed in the introduction. The signal (2) is phase modulated

only if its phase takes the form (20), and as this is not in general the case, its amplitude is not constant,

and it must be expressed as in (5).
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B. Properties of Phase Signals

Having the most general structure of phase signals, we will now present some of their properties,

which allows a better understanding of their structure.

Property 3.1:A phase signal contains only two spectral lines corresponding to its carrier frequency.

This is a direct consequence of the structure of the Blaschke function appearing in (15). Its FTB(ν) is

given by (18), which can be written as

B(ν) = δ(ν) +Bc(ν). (23)

The function Bc(ν) describes the continuous part of the FT of B(ν). It is a sum of N components

Ck(ν) that are bounded and equal to zero for ν < 0. This implies that Bc(ν) is also bounded and equal

to zero for ν < 0, and thus B(ν) exhibits only one Dirac component, or a spectral line, at the frequency

zero. Because of the exponential term in (14), the FT of z(t) is Z(ν) exp(jθ)B(ν − ν0), and this means

that there is only one spectral line at the carrier frequency ν0 = ω0/2π. By using the Hermitian symmetry,

we deduce that z(t) has only two spectral lines at the frequencies ±ν0.

This property can be used in a reciprocal way, indicating that all the signals containing more that

one spectral line in the range of positive frequencies cannot be phase signals and, therefore, exhibit a

nonconstant instantaneous amplitude.

Property 3.2: A phase signal with a nonzero carrier frequency) is a high-frequency(ν0 signal. This is

a direct consequence of the form of the FT Z(ν) analyzed just above. As B(ν) = 0 for ν < 0, Z(ν) = 0

for ν < ν0 and X(ν) = 0 for |ν| < ν0.

The converse is, of course, not true. There is no reason for a high-frequency signal to be a phase signal

because this frequency condition does not imply the structure (14). A simple counterexample appears

with a high-frequency signal containing more than two spectral lines and, thus, does not satisfy Property

3.1.

Property 3.3: The FT of the AS of a phase signal is zero for all the frequencies smaller than the

carrier frequency ν0 where the spectral line is located. This is a direct consequence of (23) and of the

fact that the FT Z(ν) ofz(t) is proportional to B(ν − ν0).

Property 3.4: A phase signal cannot be a low-frequency(B) signal except when it is monochromatic.

The monochromatic case appears when b(1), and z(t) is therefore cos(ωt + θ), that is, of course, a

low-frequency signal. Except in this case, the property means that it is impossible to find a frequency B

such that Z(ν) = 0 for ν > B. This property can be shown by two procedures. In the first, we simply

note that the functions Ck(ν) of (18) are exponential functions for ν > 0 when the poles are distinct.
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However, it is well known that a sum of a finite number of exponential functions cannot be zero for all

the frequencies satisfying ν > B.

It is also possible to show this property by contradiction. Suppose then that there exists a frequency

B such that Z(ν) = 0 for ν > B. It results from this assumption and from Property 3.3 that the FT of

z(t) is zero outside the frequency interval ν0 < ν < B and has a spectral line at the carrier frequency

ν0. Consider now the signal z∗(t). Its FT is equal to Z∗(−ν), and this FT is zero outside the frequency

interval −B < −ν < −ν0 and has a spectral line at the frequency −ν0. Let us now introduce the signal

w(t) = z∗(t) exp(2πjft), (24)

with f > B. This signal obviously satisfies |w(t)| = 1, and the frequency condition ensures that it is an

AS. It then has the general form (14) and (15) and must satisfy Property 3.3. However, its spectral line

is at the frequency f − ν0, and W (ν) is not zero for ν < f − ν0. This is in contradiction with Property

3.3, which shows the result.

Property 3.5: Frequency Shift. If in (14) we replace ω0 with ω1, with ω1 > ω0, we obtain a complex

signal that is still an AS. As a consequence, if x(t) cos[φ(t)] is a phase signal, which means that its phase

has the structure (20), x′(t = a cos |∆ωt+ φ(t)]), where ∆ω = ω1 − ω0, is still a phase signal with the

carrier frequency ω1. This especially implies that x′(t) is a high-frequency(ω1) signal.

Property 3.6: Instantaneous Frequency of a Phase Signal: It is obtained by differentiating the instan-

taneous phase. The most general form of this phase is given by (21) and (22), and differentiating this

equation yields

ω(t) = ω0 + 2
N∑
k=1

bk
b2k + (ak − t)2

. (25)

A similar equation has been obtained in [20] and [21] by using a rather different procedure.

As the coefficients bk are positive, because of the localization of the zeros zk, we deduce that the

instantaneous frequency ω(t) is always greater than ω0. This is another illustration of the fact that the

FT of z((t) is zero for ν < (1/2π)ω0. If all the zks are zero, then b(t) defined by (15) is equal to one,

and the instantaneous frequency is tsimply ω0.

Some other comments can be presented on the structure of the instantaneous frequency of a phase

signal, and this is especially relevant in all those questions dealing with frequency or phase modulation

of signals. The information carried by the instantaneous frequency of a phase signal is entirely in the

term

ωm(t) = 2
N∑
k=1

bk
b2k + (ak − t)2

, (26)
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where the index m stands for the modulation term. We note that this function tends to zero when |t| → ∞.

This especially means that ωm(t) cannot be a periodic function, and this is related to the fact that a phase

signal cannot have spectral lines, except those coming from the carrier angular frequency ω0.

Furthermore, we note that ωm(t) is a rational function in t. The polynomials appearing in the numerator

and the denominator have the degrees 2N − 2 and 2N , respectively. As N isarbitrary, we deduce that

by using the 2N parameters ak and bk, it is possible to approximate a large class of functions. The most

limiting constraint on these functions comes from the necessary behavior for |t| → ∞. In fact, ωm(t)

decreases at infinity in |t|−2, which is a strong restriction on the instantaneous frequency.
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