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Abstract

Polyspectra are related to Fourier transforms of moment or cumulant functions of any order of random

signals. They play an important role in many problems of signal analysis and processing. However, there

are only a few statistical models giving explicitly the expression of polyspectra. Ordered signals are signals

for which the explicit expression of the moment functions requires that the time instants appearing in these

moments are put in an increasing order. There are many examples of such signals, the best known being

the random telegraph signal constructed from a Poisson process. Some of these examples are presented

and analyzed. The origin of the ordering structure is related with the point that real time is an oriented

variable making a difference between past and future. This especially appears in Markov processes.

The calculation of polyspectra is difficult because ordering is not adapted to Fourier analysis. By an

appropriate grouping of various terms, the explicit expression of spectral moment functions is obtained.

It shows in particular that many ordered signals present a normal density on the normal manifolds of

the frequency domain and another contribution on the stationary manifold that is explicitly calculated.
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The analysis of the structure of this expression allows us to discuss some relationships with normal

distribution, central limit theorem, and time reversibility.

Index Terms

Central limit theorem, higher order statistics, normal distribution, signal analysis, spectral represen-

tation.

I. INTRODUCTION

POLYSPECTRA play an especially important role in the methods of signal analysis and processing

using statistics of an order higher than two (HOS). From the structure of polyspectra it is possible to

deduce various properties of signals that do not appear when using the power spectrum only. For example,

many quite different signals can have the same correlation function, or the same power spectrum, but they

can be distinguished by using HOS. Furthermore, there are various methods of signal processing using

polyspectra in order to solve problems that cannot be solved by only using secondorder statistics. There

are many papers dealing with properties and applications of bi- or trispectrum and it is not possible here

to give a significant list of these papers. Restricting our attention to signal analysis, it is worth pointing

out the papers where the general structure or symmetry of polyspectra are studied [1][4]. However,

the mathematical expression of polyspectra is in general difficult to write explicitly. This expression is

well known in the case of strictly white signals, of normal signals, of Poisson processes (see [5, Chs.

7 and 8]), and for linear processes or some nonlinear processes characterized by a Volterra expansion

(see [6, p. 39]). Many papers deal with polyspectra of nonnormal signals [7][9]. However, without any

additional specification, only general structure can be used in this case, because nonnormality does not

introduce any precise definition of the statistics of a signal. Therefore, if we require explicit analytic

expressions of polyspectra, it is necessary to introduce statistical models of signals that can represent

physical phenomena and have a structure leading to possible explicit calculations. This is one of the main

purposes of this paper. Many signals are related to physical phenomena or obtained by systems operating

in real time. Therefore, the variable appearing in the signal is not only a point on a straight line, but

an oriented variable because time is going in one sense only. This is the basis of the questions related

with causality. This also appears in HOS in which we study mean values of a signal at time instants

t1, t2, ..., tn . From a mathematical point of view these instants are arbitrary, and this is especially true

for calculating the polyspectra. Indeed, this calculation requires a Fourier transformation in which the

variables are independent variables going from −∞ to +∞. However, from a physical point view these

instants must sometimes be put in an increasing order. This is especially the case for signals in which the
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future is constructed from the present and the past. Therefore, for such signals, here called ordered signals

and very common in practical problems, calculation of polyspectra requires specific methods analyzed

here. The paper is organized as follows. In Section II, a short review of known concepts concerning

moments and cumulants and their Fourier transforms is presented. Because of its importance in the

analysis that follows, a specific emphasis is put on the stationary and normal manifolds in the frequency

domain. There are surfaces characterizing the fact that a signal is stationary or normal, respectively. As

relation to normality is an important issue, these manifolds will play an important role is the discussion

that follows. Section III introduces the concept of ordered signals. These signals are characterized by

the fact that the explicit expression of their moments or cumulants requires an ordered sequence of time

instants. The simplest example of such signals is the famous random telegraph signal (RTS). Because

of its simplicity it will be analyzed in detail. However, there are many other examples and some of

them are presented and discussed. These signals frequently appear in physical applications because the

ordering property is quite natural. For example, it appears with Markov processes for which past and

future are independent, given the present. Then there is in the definition an ordering structure making a

difference between past, present, and future. The principle of the calculation of the Fourier transforms

of some ordered signals is presented. The difficulty comes from the fact that the explicit expression of

the moment is known only for one permutation. Therefore, there exists different values of a moment

of order and distinct domains for the calculation of the Fourier transform, which leads to a great deal

of algebraic manipulations. Furthermore, the ordering property makes a strong difference between past

and future, and, therefore, introduces in the time domain many unit step functions. As a consequence,

the calculation of the Fourier transform leading to the polyspectra requires some specific and unusual

properties of distributions. These calculations are used to obtain some polyspectra of ordered signals and

to discuss their properties. One of the most important points to analyze is the value of the density on

the normal manifolds and it is shown that for many ordered signals this density is the same as the one

of a normal process (normal density). The last sections are devoted to the study of some consequences

concerning central limit theorem and time reversibility. By central limit theorem we mean the fact that a

nonnormal signal can become approximately normal after its filtering in a narrowband filter. On the other

hand, reversibility means the fact that the statistical properties can remain invariant by time reversing. It

is shown that these properties are strongly related to the value of the polyspectra on normal manifolds,

which justifies the interest in analyzing their structures.
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II. REVIEW OF KNOWN RESULTS

Let x(t) be a real random signal with zero mean value. The variable refers to the time and most of the

following results are valid in continuous and discrete time. The nth-order moment (or moment function)

of x(t) is defined by

mn(t) = E[x(t1)x(t2)...x(tn)]. (1)

If the stationarity assumption is introduced, this moment is a function of only n− 1 variables. For n = 2

we obtain the correlation function written as γt1 − t2). When x(t) is normal, or Gaussian, the moment

(1) is zero for n odd and for even values of n takes the form

mG
2k(t) =

∑
P

∏
γ(ti − tj), (2)

where the sum with respect to the normal (or Gaussian) partitions P contains (2k−1)!! terms generalizing

in an obvious way the expression

mG
4 (t) = γ(t1 − t2)γ(t3 − t4) + γ(t1 − t3)γ(t2 − t4) + γ(t1 − t4)γ(t2 − t3), (3)

valid for k = 2. The letter G refers to the Gaussian structure.

Instead of using the moments defined by (1), it is sometimes more interesting to use the cumulants

functions cn introduced first in [10]. It is not appropriate to present here a discussion concerning respective

advantages and disadvantages of moments and cumulants. Note simply that the cumulants of a normal

signal are zero for n > 2. Furthermore, there is the same information in moments or cumulants and the

expression allowing the calculation of cumulants in terms of moments is given in [6, p. 19].

Polyspectra are related to the Fourier transforms (FT) of moments or cumulants. Let Mn({fi}) =

m(f) = be the FT of (1) called here spectral moment function. If x(t) is stationary this function can be

written (see [5, p. 238]) as

Mn({fi}) = Γn−1(f1, f2, ...., fn−1)δ(
n∑
i=1

fi), (4)

where δ(.) is the Dirac distribution. This means that Mn({fi}) = 0, except on the manifold of the space

f1 × f2 × ... × fn defined by
∑n
i=1 fi = 0 called stationary manifold. The function Γn−1(.) is called

the polyspectrum of order n− 1. The polyspectrum of order 1 is the classical power spectrum Γ(f) of

x(t), FT of its covariance function. For practical applications, bi- and trispectra are the most often used

polyspectra. The same procedure can be applied to the cumulants, which introduces the cumulant spectral

functions and polyspectra.
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For the discussion that follows it is especially interesting to consider the normal case. By Fourier

transformation of (2) we obtain

MG
2k({fi}) =

∑
P

∏
γ(fi)δ(fi + fj), (5)

where the sum is calculated with respect to the normal partitions P . For 2k = 4 this gives

MG
2k({fi}) = Γ(f1)Γ(f3)δ(f1 + f2)δ(f3 + f4) + Γ(f1)Γ(f2)

δ(f1 + f3)δ(f2 + f4) + Γ(f1)Γ(f2)δ(f1 + f1)δ(f2 + f3). (6)

This introduces the concept of normal manifolds and of normal density (see [5, p. 278]). It results from

(5) that MG
2k({fi}) is zero outside the manifolds defined by equations such that

f1 + f2 = 0, f3 + f4 = 0, f2k−1 + f2k = 0. (7)

There are (2k−1)!! such manifolds defined by the (2k−1)!! permutations of the s giving distinct equations

of this form. These manifolds are called in the following normal manifolds and are clearly submanifolds

of the stationary manifold defined after (4). Furthermore, the density on these normal manifolds is not

arbitrary, but appears as a product of spectral densities of the signal and this structure is called a normal

density. These properties can clearly be expressed in terms of polyspectra by applying (4) to (5). For

example, the moment trispectrum of a normal signal is

ΓG3 (f1, f2, f3) = Γ(f1)Γ(f3)δ(f1 + f2) + Γ(f1)Γ(f2)δ(f1 + f3)

+Γ(f1)Γ(f2)δ(f2 + f3). (8)

The first normal manifold for the trispectrum is then defined by f1 + f2 = 0. In the space f1× f2× f3 it

is the plane defined by two straight lines: the axis defined by f1 = f2 = 0 and the bisectrix of the axes

defined by ff1 = −f2, f3 = 0 On this plane the normal density is . The other two normal manifolds are

defined similarly.

Conversely, if the function Mn({fi}) defined by (4) has the normal structure characterized by (5)

for any value of , the moment (1) has the form (2). As the sequence of all the moments defines the

probability distribution, a sequence of normal moments means that the signal is normal. As a result, a

nonnormal process with a zero mean value has a spectral moment function that does not satisfy at least

one of the following properties: 1) M2k+1({fi}) = 0 , 2) M2k({fi}) = 0 outside the normal manifolds,

and 3) the density on the normal manifolds is not normal. For example, spherically invariant processes

(see [5, p. 299]) have spectral moment functions (4) equal to zero for n = 2k+ 1 and outside the normal

manifolds for n = 2k, but the density on the normal manifolds is not normal. In other words, the spectral
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moment functions are the same as those of normal signals, except the value of the density on the normal

manifolds.

The structure of the density on the normal manifolds is important for various questions as ergodicity

[11], central limit theorem for signals, and time reversibility analyzed in the following for ordered signals.

Let us consider the cumulant polyspectra noted Γc({fi}). They are defined exactly by the same

procedure in which the moment function appearing in (1) is replaced by the cumulant function. These

polyspectra are especially interesting in two cases. The first appears if the signal is normal. Indeed, the

only nonzero polyspectrum of a normal signal is the power spectrum. This is an interesting characteristics

or normality. The second case corresponds to the discrete-time strictly white noise. This means that x[k]

is a sequence of independent and identically distributed (i.i.d.) random variables with cumulants cn.

It results from the basic properties of cumulants that the cumulant polyspectrum appearing in (4) is

now Γc,n−1 = cn. The same expression for the moments instead of cumulants is, of course, much more

complex to write explicitly. However, for the following discussion it is interesting to study more carefully

the relation between moment and cumulant polyspectra of discrete-time white noise. Let us first consider

the case of the trispectrum. The moment trispectrum of white noise is

Γ3(f1, f2, f3) =

c22[δ(f1 + f2) + δ(f1 + f3) + δ(f2 + f3)] + c4, (9)

while the cumulant trispectrum is simply c4. This shows that, contrary to the cumulant trispectrum, the

moment trispectrum is not bounded in the space f1 × f2 × f3× because of the presence of the delta

distributions appearing in this equation. This is often considered as the most important disadvantage of

moment trispectrum with respect to cumulant trispectrum, and this appears not only for the trispectrum

but for any polyspectrum. Furthermore, (9) shows that the spectral moment function Mn({fi}) appearing

in (4) is distributed on the normal manifolds with a normal density and also on the stationary manifold

with the density c4. These points, shown for the trispectrum, are general for polyspectra of any order and

lead to a geometrical interpretation of the relation between moments and cumulants. For this, consider the

spectral moment function M6({fi}) of white noise. This function is zero outside the stationary manifold

but is also distributed on some of its submanifolds. There are three kinds of such manifolds. The first ones

are the normal manifolds defined by equations such that f1+f2 = 0, f3+f4 = 0, f5+f6 = 0 and all their

distinct permutations. The density on these manifolds is m3
2, where mn is the th-order moment of the i.i.d.

random variables defining the white noise. The second submanifolds are on the type f1 + f2 + f3 = 0,

f4 + f5 + f6 = 0 and the density is now m2
3. Finally, there are the manifolds f1 + f2 + f3 + f4 = 0,

f5 + f6 = 0, and all their distinct permutations, introducing the density m2m4. In order to obtain a
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bounded spectral cumulant it suffices to subtract from the spectral moment all these terms and making

this operation gives the relation giving moments in terms of cumulants. The same discussion can be

presented for the continuoustime white noise by using known results concerning general properties of

processes with independent increments.

The fact that the cumulant polyspectra are bounded is not specific to white noise and is true for

many other signals. This is especially the case for linear processes [6], which means signals obtained

at the output of a linear filter driven by a white noise. The cumulant function cn(t1, t2, ..., tn) in the

continuous-time case is given by

cn(t1, t2, ..., tn) =

cn

∫
h(t1 − θ)h(t2 − θ)...h(tn − θ)dθ (10)

where cn characterizes the driving white noise and h(t) is the impulse response of the filter. The cumulant

polyspectra are, therefore,

Γc,n−1(f1, f2, ..., fn−1)

= cnH(f1)H(f2)...H(fn−1)H(−f1 − f2 − ...− fn−1), (11)

where H(f) is the frequency response of the filter. When this filter is real we can use the Hermitian

symmetry H(−f) = H∗(f) to simplify this expression. It shows obviously that if H(f) is bounded the

cumulant polyspectra are also bounded. However, it must be noted that this property is not valid for

every signal and there are many counterexamples. The simplest is certainly that of spherically invariant

processes introduced above. One can show, for example (see [5, p. 280]), that their cumulant trispectrum

can be written as kΓG3 (f1, f2, f2), where k = 0 in the normal case. It is obvious from (8) that this

spectrum is not bounded in the space f1 × f2 × f3.

Furthermore, note that (10) introduces a necessary condition in the time domain that must satisfy a

signal to be a linear process. By integration of (10) with respect to some time instants we obtain easily

if cm 6= 0 ∫ ∫
...

∫
cn(t1, t2, ..., tm, tm+1, tm+2, ..., tn)dtm+1dtm+2...dtn

=
cn[H(0)]n−m

cm
cm(t1, t2, ..., tm). (12)

In this expression, it is useful to note that H(0) is related to the power spectrum by the relation Γ(0) =

c2|H(0)|2.

Linear processes are the most used in practice and (11) shows that their polyspectra possess a fac-

torization property. Note, however, that a factorization such as (11) does not imply that the signal is a

linear process. For this, (11) must be satisfied for any n and, furthermore, the coefficients appearing in
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this factorization must satisfy various conditions ensuring that a set of numbers cn is a set of cumulants.

These conditions appear in the famous moment problem of probability theory.

There is a point important to note concerning the HOS of random signals. Any second-order signal

can be considered as generated by a linear filter driven by white noise. This only means that the signal

and its linear model have the same correlation function. However, these two signals have no reason to

be identical. This is no longer true for HOS and, for example, if (12) is not satisfied, there is no linear

filter and white noise giving an output with the same statistics.

Note finally that when no a priori knowledge of a signal is introduced the calculation of the cumulant

functions requires the use of the very complex expression giving these functions in terms of moments

function and this is the reason why most of the calculations that follow are realized with moments, and

cumulants are only sometimes introduced.

III. ORDERED SIGNALS

A. Introduction and Definition

The function mn({ti}) defined by (1) is symmetric with respect to the variables ti. This means that

it is invariant under the n! permutations of these time instants. Let us call θi the time instants deduced

from the tis by the permutation ensuring that θi ≤ θi+1. We shall say that the θis constitute the ordered

permutation of the tis. It is clear that mn({ti}) is known as soon as mn({θi}) is known.

There are signals for which mn({ti}) is explicitly defined for any value of the s. This is, for example,

the case of the normal signals, according to (3). However, this is not always the case.

Ordered signals are signals for which only mn({θi}) is known, which means that the explicit expression

of mn({ti}) is known only for the ordered permutation of the s. Various examples of such signals will

be presented hereafter. It is worth pointing out that for n = 2 this ordering property is described by the

absolute value. For example, the correlation function exp[−(t1 − t2)2] is defined for any set of tis. On

the other exp[−|t1 − t2|] hand, the correlation function takes two distinct explicit expressions according

to the sign of t1 − t2.

It is well known that the symmetry property of mn({ti}) has its counterpart in the Fourier domain. The

obvious consequence is that the spectral moment function Mn({fi}) appearing in (4) is symmetric with

respect to the fis. This implies that this property is also valid for the polyspectrum Γ({fi}) appearing

in (4). But, because of the delta term, the polyspectrum is invariant when replacing any frequency by

fn = −(f1 + f2 + ...fn−1). This was used in many papers discussing the minimum domain of definition

of the polyspectrum. On the other hand, the ordered property has no direct consequence on polyspectra
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because the structure of such polyspectra is a consequence of their calculation, which is the purpose of

this paper.

There is a large class of signals for which the explicit expression of the moment function (1) requires

that the distinct times instant ti be classed in a given order. This order defines a specific permutation

({θi}) of the time instants ({ti})and the expression of mn({ti}) is given in terms of the θis. This property

is the origin of the expression of ordered signals.

It is worth pointing out that this is not in contradiction with the symmetry property of the moments

meaning that mn({ti}) is invariant under any permutation of the tis. Indeed, any permutation of a given

set of n instants ti does not change the unique set of instants θi obtained by an ordering of the tis.

We shall now present the simplest examples of ordered signals and afterwards discuss the origin of

the ordering property.

B. Random Telegraph Signal (RTS)

It is a signal which only takes the values ±1 of with the same probabilities, the changes of signs

arising at the time instants ti of a stationary Poisson point process of density λ. Its correlattion function

is

m2(t1; t2) = γ(t1 − t2) = exp(−2λ|t1 − t2|)

The moments (1) are zero for odd values of n and for even values one obtains (see [5, p. 334])

m2k({ti}) = γ(θ2 − θ1)γ(θ4 − θ3)...γ(θ2k − θ2k−1), (13)

where the time instants θi are obtained by the unique permutation of the 2k distinct tis such that θi < θi+1.

This is the simplest example of ordered signal discussed hereafter. It is interesting to compare this

expression with (3) valid for k = 2 and normal signals. In this case, there are three terms due to the

three normal partitions, while (13) exhibits only one term due to the only one ordered permutation. Note

especially that for this signal it is obviously much easier to work with moments than with cumulants.

Indeed, using the classical expression giving cumulants in terms of moments leads to a very complicated

mathematical expression. However, we see immediately that if the moments are simple to write explicitly

the calculation of polyspectra remains complicated because of the ordered structure that is not appropriate

for a simple Fourier transformation.

C. Random Jump Signals

In the studies concerning abrupt changes of the state of systems, one can describe the situation by the

following signal. The starting point is once again a Poisson process of density λ. At each time instant pi
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of the process we choose a random variable Vi with a zero mean value. We assume that all these random

variables are i.i.d. and also independent of the Poisson process. The signal x(t) is defined as equal to Vi

for pi ≤ t < pi+1. This is, therefore, a constant signal with random jumps at the points of the Poisson

process. Hence, the statistics of the signal are completely described by the moments mn of the random

variables Vi and by the density of the Poisson process. As before, it is assumed that m1 = 0. Let us

indicate the principle of the calculations of the moments functions.

Let θ1 and θ2 be two distinct arbitrary and ordered (θ1 < θ2) time instants. If there is at least one

point pi of the process in the interval [θ1, θ2], x(θ1) and x(θ2) are independent and E[x(θ1)x(θ2)] = 0.

If there is no point in this interval, an event with probability exp[−λ(θ2 − θ1)], E[x(θ1)x(θ2)] = m2

Thus for any t1 and t2, the correlation function of x(t) is

m2(t1, t2) = γ(t1 − t2) = m2 exp[−λ(|t2 − t1|)]. (14)

Let us now calculate the third-order moment defined by (1). The reasoning is the same. Let θis be the

time instants obtained by the ordered permutation of the tis. Because of the assumption of zero mean

value E[x(t1)x(t2)x(t3)] = 0 as soon as there is at least one point pi between θ1 and θ3. This yields

m3(t1, t2, t3) = m3 exp[−λ(|θ3 − θ1|)]. (15)

and the interesting point is that this expression does not depend on the intermediary time θ2.

Consider now the fourth-order moment (1). The θis define still the ordered permutation of the distinct

s. Let X be the random variable

X = x(θ1)x(θ2)x(θ3)x(θ4).

Because of the assumption of independence and zero mean value, E(X) 6= 0 only if there is no point

of the Poisson process in the intervals [θ1, θ2] and [θ3, θ4]. Moreover, if there is also no point in [θ1, θ2],

then E(X) = m4, and if there is at least one point in this interval, we have E(X) = m2
2. Combining

these results we deduce that

m4(({ti}) = m2
2[1− exp{−λ(θ3 − θ2)}][exp{−λ(θ2 − θ1 + θ4 − θ3)}]

+m4 exp{−λ(θ4 − θ1)}, (16)

This can be expressed in the form

m4(({ti}) = γ(θ2 − θ1)γ(θ4 − θ3) + (m4 −m2
2) exp{−λ(θ4 − θ1)}, (17)

It is worth pointing out that (m4 −m2
2) is the variance of the random variable V 2

i and if (m4 = m2
2),

then V 2
i is no longer random. This implies that the random variables can only take the values ±√m2,
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PICINBONO: POLYSPECTRA OF ORDERED SIGNALS 11

and, as the mean is zero, these two values have the same probability. In this case, the trajectories of

the signal x(t) are similar to those of the RTS, with the big difference that the changes of the sign are

random instead of deterministic. That is the reason we obtain the term λ instead of 2λ in the correlation

function (14). Furthermore, (17) is a sum of two terms. The first one is similar to (13) valid for the RTS

while the latter has the same structure as (15).

The same principles can be used for the calculations of the moments (1) for any value of . However,

the expressions become more and more tedious to write explicitly.

It is worth noting that the RTS and the random jump signal have the same exponential correlation

function, even though they are quite different signals. The RTS only takes two values while the random

jump signal takes the possible values of the random variable V which is arbitrary, provided that its

moments do exist. First this means that all the methods using only the correlation function will give the

same result. This is especially the case in the linear prediction, and therefore the prediction innovation

is the same. As a consequence they have the same linear representation. Second, this shows the interest

of HOS, because these two signals can be distinguished by third-order moments, or by their trispectrum.

Finally, let us show that the random-jump signal cannot be a linear process. Indeed, applying (12) and

noting that for n = 2 and n = 3 moments and cumulants are equal yields∫
m2(t1, t2, t3)dt3 = αγ(t1 − t2), (18)

where α is a constant and γ(τ) is the covariance function. This is a necessary condition in terms of

moments to obtain a linear process. By choosing t2 = 0 and t1 > 0 we obtain that the integral appearing

in (18) is proportional to (t1 + 2/λ) exp()− λt1, which means that (18) is not satisfied.

This model can be generalized by replacing the random variables Vi by random signals vi(t) with the

same assumptions of independence. Assuming that all these signals have the same statistical properties

and reasoning the same way as previously yields the covariane function

γ(t1 − t2) = exp[−λ(|t2 − t1|)]c(t2 − t1), (19)

where c(t2 − t1) is the correlation function common to all the signals of the model. Similarly, the

third-order moment takes the form

m3(t1, t2, t3) = µ3(t1, t2, t3) exp[−λ(θ3 − θ1)], (20)

where µ3(t1, t2, t3) is the third-order moment function (1) common to all the signals vi(t) of the model.

Finally, the fourth-order moment is

m4(({ti}) = γ(θ2 − θ1)γ(θ4 − θ3)
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+[µ4(({ti})− c(θ2 − θ1)c(θ4 − θ3] exp[−λ(θ4 − θ1)], (21)

where µ4(.) is the moment (1) of the signals vi(t). All these examples of fourth-order moments exhibit

two common properties: the first is that the explicit expression of m4(({ti}) requires an ordering of the

time instants ; the latter is that, even though the expressions are different, the correlation function γ(.)

of the signal appears in the form γ(θ2 − θ1)γ(θ4 − θ3.

D. Origin of the Ordering Property and Extensions

The RTS is one of the simplest example of continuous-time Markov process and the ordering property

appears for many other Markov processes. Furthermore, the point common to all the signals presented

before is that they are obtained from a Poisson process, which means a process with independent

increments. It is precisely this property that introduces the ordering procedure for the calculations of higher

order moments. Indeed, the time instants must be taken in an increasing order to use the independence

property of successive increments. As a result it is tempting to verify whether or not other ordered

signals can be obtained from other processes with independent increments. In the continuous-time cases,

the degree of freedom is not very large because the only other kind of such process is the Brownian

motion, introducing independent increments with normal distribution.

In this perspective there is a well-known signal that can be considered. It is the phase-noise signal

introduced in the studies of frequency or phase stability of oscillators and also in the problems of

coherence of laser light [12]. It is a complex signal defined by

z(t) = exp

[
jω0t+

∫ t

0
dw(θ) + Φ

]
, (22)

where w(t) is a Brownian motion of with diffusion constant c and Φ a random phase uniformly distributed

between 0 and 2pi. This assumption ensures the stationarity of the signal and also the circularity property

[13]. As a consequence, the only nonzero second-order moment is the correlation function γ(τ) =

E[z(t)z∗(t− τ)] which is

γ(τ) = exp[jω0τ + E{exp[j

∫ t

t−τ
dw(θ)]} (23)

The integral appearing in this equation is a normal random variable with variance cτ , which implies that

the correlation function of the signal is exp(jω0τ) exp(−c|τ |) By using the same definition of the θis as

previously and also again the property of independent increments we find that

E[z(θ2)z
∗(θ1)z(θ4)z(θ2)] = γ(θ2 − θ1)γ(θ4 − θ3), (24)

which is similar to (13) and introduces an ordering structure. Because of the circularity property all the

other fourth-order moments are zero. However, there is a strong difference with the case of the RTS.
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Indeed, when permuting the time instants in (26) we must also permute the position of the complex

conjugate, which introduces a strong difference with the real case and various changes in the calculations

that follow. That is why we shall restrict the following analysis to real signals.

On the other hand, many of the previous results can be extended to the case of compound Poisson

processes. These processes appear in many physical situations, and especially in statistical optics (see [5,

p. 345]). A compound Poisson process is a Poisson process with a random density. This means that in all

the previous calculations of moments it is necessary to take an expectation with respect to the positive

random variable λ. It is even possible to assume that λ is replaced by a positive random process λ(t),

but this case is not analyzed in this paper.

Finally, note that the transposition to the discrete-time does not introduce any difficulty. Any sequence

of i.i.d. random variables defines a random-walk process which has independent increments. From this

process various ordered signals can easily be defined. For the calculations of polyspectra the difference

is that integrals are replaced by series and the frequency domain is now limited to a finite interval, say

[−1/2,+1/2].

IV. COBCLUSION

The study of very common signals, such as the RTS, introduces the property of time ordering. This

property means that the calculation of fourth-order moments, and more generally moments of an order

higher than two, requires a permutation such that the time instants are put in an increasing order. This

ordering property is a consequence of the fact that time is oriented and appears in many examples of

signals representing physical phenomena in real time. The HOS properties of many ordered signals are

very simple to express in the time domain and various examples of higher order moment functions have

been presented. On the other hand, the ordering property is not at all adapted to Fourier transformation

leading to polyspectra. Indeed, in this transformation time is only a variable of integration and orientation

of time does not play any role.

We presented a general method in order to calculate the polyspectra of ordered signals. The principle

of this method is to decompose the domain of integration with respect to time in an appropriate way

taking into account the ordering property of the signal. Furthermore, the grouping of various terms coming

from this decomposition is facilitated by using some nonstandard properties of distributions. This method

was especially used for some specific signals such as the RTS or various signals deduced from Poisson

processes. A closed form of their polyspectra has been obtained and there are very few nonlinear models

for which this is possible.
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One of the most important points to study is the structure of the polyspectra on the normal manifold. If

the polyspectra on these manifolds have a normal density, there are simple relationships between cumulant

and moment polyspectra. Furthermore this property allows one to determine whether or not a nonnormal

signal can become normal after narrowband filtering, which is a spectral approach of the central limit

theorem.

Even if the ordered signals presented here are not normal, the calculation of polyspectra shows that they

present a normal density on the normal manifolds and another contribution on the stationary manifold

that was explicitly calculated.
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