Robust output feedback control: convex lifting based approach
Ngoc Anh Nguyen, Sorin Olaru

To cite this version:
Ngoc Anh Nguyen, Sorin Olaru. Robust output feedback control: convex lifting based approach. 56th IEEE Conference on Decision and Control (CDC 2017), Dec 2017, Melbourne, Australia. <10.1109/cdc.2017.8263990>. <hal-01692255>

HAL Id: hal-01692255
https://hal-centralesupelec.archives-ouvertes.fr/hal-01692255
Submitted on 24 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Robust output feedback control: convex lifting based approach

Ngoc Anh Nguyen¹, Sorin Olaru¹

Abstract—This paper presents a design method for robust output feedback control of linear, discrete-time, invariant systems affected by both state and output additive disturbances. The method relies on the so-called convex lifting, which is defined on the \(N \)-step controllable set. It is proven that the proposed method guarantees the recursive feasibility and robust stability in the sense that the closed loop converges to a given robust positively invariant set as time tends to infinity. Moreover, the method only requires the resolution of a linear programming problem at each sampling instant. Finally, a numerical example is considered to illustrate the methodology.

I. INTRODUCTION

Robust control is still an active topic in control theory, although extensive studies have been dedicated to over several decades, see among the others [16], [27]. In these robust control problems, full knowledge of the state is required, however, in practice measurement is usually affected by external noises. Therefore, suitable observer is required to estimate the state and to integrate in control design. As a consequence, control strategy becomes output feedback, since it is a function of outputs. Among the available methods, a basic idea is to transform a robust output feedback control problem into a robust state feedback counterpart, see [6]. Accordingly, robust control methodologies can be applied. Note that if the underlying system is linear and subject to linear constraints, a linear Luenberger observer can be deployed. On this direction, model predictive control (MPC) strategies were proposed in [14], [26]. A common point of MPC strategies is that suitable terminal constraints, describing a robust positively invariant set, are imposed at the end of the prediction horizon, leading to robust stability [15]. However, this also leads to an exponential increase of the number of constraints along the prediction horizon and subsequently to a demanding online evaluation.

To reduce the computational complexity, set-theoretic methods can also be of use by determining a priori a suitable control Lyapunov function, as employed in [4]. This method only requires to solve a linear program at each sampling instant. However, it also requires the contractivity of the feasible region over which this control Lyapunov function is defined. The computation of such a contractive set is usually based on an iterative procedure, known to be demanding. Recall that the vertex control presented in [10] also requires the contractivity of the feasible region. As an extension, the interpolation based approach was put forward in [18], in which the interpolation gain serves as a control Lyapunov function. Accordingly, robust stability is ensured by the non-increase of this gain along the dynamics. Moreover, the so-called convex lifting approach has recently been presented in [22], [24]. Unlike the above set-theoretic methods, this concept is not a control Lyapunov function, however the contractivity of the feasible region is still required.

This paper presents an alternative method, relying on a suitable convex lifting as an extension of the method in [22], [24]. More precisely, this convex lifting is defined over an \(N \)-step controllable set, known not to be contractive. Similar to these set-theoretic methods, terminal constraints are not imposed. However, unlike a control Lyapunov function, this function is equal to 0 over a given robust positively invariant set and strictly positive outside this region. In addition, this function is shown to be strictly decreasing along the closed-loop dynamics outside this invariant set, leading to its convergence to 0 as time tends to infinity. Accordingly, robust stability is guaranteed by means of the convergence of the closed-loop dynamics to a given robust positively invariant set. Meanwhile, this method also requires to solve a linear program at each sampling instant, it thus could be useful for systems with fast dynamics, e.g. cantilever beam system [9].

Nomenclature

Throughout the paper, \(\mathbb{R}, \mathbb{N}, \mathbb{N}_{>0} \) denote the field of real numbers, the set of nonnegative integers and the positive integer set, respectively. The index set \(\mathcal{I}_N = \{1, 2, \ldots, N \} \) with respect to a given \(N \in \mathbb{N}_{>0} \).

A polyhedron is defined as the intersection of finitely many closed halfspaces. A polytope is defined as a bounded polyhedron. Also, \(\mathcal{V}(P) \) denotes the set of vertices of polytope \(P \). We use \(\text{int}(S) \) to denote the interior of a full-dimensional set \(S \) and \(\text{conv}(S) \) denotes the convex hull of \(S \). Also, given a set \(S \) and a matrix \(A \) of suitable dimension, we use \(AS \) to denote the following set: \(AS = \{ Ax : x \in S \} \). Given two sets \(S_1, S_2 \subset \mathbb{R}^d \), by \(S_1 \setminus S_2 \), we denote the following set: \(S_1 \setminus S_2 := \{ x \in \mathbb{R}^d : x \in S_1, x \notin S_2 \} \). Also, the Minkowski sum of these two sets, denoted by \(S_1 \oplus S_2 \), is defined as follows: \(S_1 \oplus S_2 := \{ x_1 + x_2 : x_1 \in S_1, x_2 \in S_2 \} \). Finally, the Potryagin difference \(S_1 \ominus S_2 \) is defined by: \(S_1 \ominus S_2 := \{ x : x \oplus S_2 \subseteq S_1 \} \).

II. PROBLEM SETTING

In this paper, we consider a linear time-invariant system, affected by both additive state and output disturbances:

\[
x_{k+1} = Ax_k + Bu_k + w_k \\
y_k = Cx_k + v_k
\]

(1)
where \(x_k, u_k \) denote the state and control variable at time \(k \), while \(w_k, v_k \) represent the additive state and output disturbances at time \(k \), respectively. These variables and disturbances satisfy:

\[
x_k \in X, \ u_k \in U, \ w_k \in W, \ v_k \in V,
\]

where the constraint sets \(X \subset \mathbb{R}^d_x, U \subset \mathbb{R}^d_u, W \subset \mathbb{R}^d_w, V \subset \mathbb{R}^d_v \) are assumed to be polytopes, containing the origin in their interior, with given \(d_x, d_u, d_w \in \mathbb{N}_{>0} \). This system is assumed to satisfy the following assumption.

Assumption 1: The pair \((A, B) \) is controllable and the pair \((A, C) \) is observable.

This paper aims to design robust output feedback controller which is able to cope with the state and output disturbances, and to stabilize system (1), while guaranteeing the constraints in (2). To tackle this problem, a common approach is to make use of a Luenberger observer. More precisely, this observer is written in the following form:

\[
\hat{x}_{k+1} = A\hat{x}_k + Bu_k + L(y_k - \hat{y}_k), \quad \hat{y}_k = C\hat{x}_k.
\]

If one defines \(e_k = x_k - \hat{x}_k \), then we obtain the following autonomous system, according to (1) and (3),

\[
e_{k+1} = (A - LC)e_k + w_k - Lv_k.
\]

Note that since \(w_k \in W \) and \(v_k \in V \), then \(w_k - Lv_k \), considered as additive disturbances of system (4), is also bounded in \(W \oplus (-LV) \), i.e., \(w_k - Lv_k \in \mathbb{R}^d \). Therefore, if one chooses a gain \(L \) such that \(A - LC \) is strictly stable, then it is proven in [8] that a robust positively invariant set exists (this concept will be recalled in Sect. III). Such a gain \(L \) can be determined by means of the Riccati equation for the system \((AT, CT)\).

For ease of presentation, let \(\Omega_e \) denote a robust positively invariant set for the autonomous system (4). Accordingly, for any initial error state \(e_0 \in \Omega_e \), then \(e_k \in \Omega_e \) for all \(k \in \mathbb{N}_{>0} \). The observer system (3) can be written in the following form:

\[
\hat{x}_{k+1} = A\hat{x}_k + Bu_k + Lv_k + LCe_k, \quad \hat{y}_k = C\hat{x}_k.
\]

We remark that if the initial error state \(e_0 \in \Omega_e \), then \(Lv_k + LCe_k \) is also considered as additive disturbance for the observer system (5). Furthermore, such an additive disturbance is also bounded in \(LV \oplus LC\Omega_e \). Note that \(X, V, W \) are assumed to be polytopes, therefore \(\Omega_e \) is bounded, leading to the boundedness of \(LV \oplus LC\Omega_e \). If we compute a polytopic robust positively invariant set \(\Omega_e \) for the autonomous system (4), then we can ensure that the additive disturbance \(Lv_k + LCe_k \) is bounded in polytope \(LV \oplus LC\Omega_e \). Also, it can easily be observed that \(0 \in \text{int}(LV \oplus LC\Omega_e) \), since \(0 \in \text{int}(V) \) and \(0 \in \text{int}(\Omega_e) \). As a consequence, we now return to a robust control design problem for the linear system (5) affected by bounded additive state disturbances, whose variables and parameters are bounded as below:

\[
\hat{x}_{k+1} \in X \ominus \Omega_e, \ u_k \in U, \ Lv_k + LCe_k \in LV \oplus LC\Omega_e,
\]

under the assumption that \(X \ominus \Omega_e \) is non-empty. In the sequel, we will present a robust control design method for system (5), which relies on a suitable convex lifting. Unlike the counterpart presented in [22], [24], a convex lifting employed in this paper is defined over the \(N \)-step controllable set, usually known not to be contractive. Note that the contractivity property is always required in most of existing methods related to piecewise linear control Lyapunov functions [4], [10], [17]. It is worth emphasizing that robust stability in this paper is not in the sense of Lyapunov. Instead, we will prove that such a constructive convex lifting is strictly decreasing along the closed-loop dynamics outside a given robust positively invariant set and consequently the closed loop of the observer system (5) is convergent to this set, leading to robust stability of system (1).

III. CONSTRUCTION OF SUITABLE CONVEX LIFTING

Before going to the main result, we recall some important concepts which are of use later in the proposed control design method. Positive invariance concept has been investigated in many studies [1]–[3], [5] and deployed in different control design strategies. In case the underlying system is affected by disturbances, the robust positive invariance concept is of use instead.

Definition 3.1: Given an admissible control law \(u = K\hat{x} \in \mathbb{U} \), a set \(\Omega_{\hat{x}} \subset X \ominus \Omega_e \) is called robust positively invariant with respect to system (5) subject to constraints (6) iff \((A + BK)\Omega_{\hat{x}} \subset LV \oplus LC\Omega_e \subset \Omega_{\hat{x}} \). Similar to determining an observer gain, such a local controller \(u = K\hat{x} \in \mathbb{U} \) in Definition 3.1 can also be obtained via the Riccati equation for the pair \((A, B)\). According to this local controller, one can use existing algorithms to compute a robust positively invariant set \(\Omega_{\hat{x}} \), see for instance [8], [13], [17], [25]. Hereafter, \(\Omega_{\hat{x}} \) is assumed to be a full-dimensional polytope.

Another important concept is the feasible region. Unlike the one deployed in [24], in this paper we make use of the \(N \)-step controllable set as the feasible region with respect to a given \(N \in \mathbb{N}_{>0} \). Its definition is recalled below.

Definition 3.2: Consider system (5) subject to constraints (6). Let a robust positively invariant set \(\Omega_{\hat{x}} \) and \(N \in \mathbb{N}_{>0} \) be given. A set denoted by \(K_N(\Omega_{\hat{x}}) \subset X \ominus \Omega_e \) is called the \(N \)-step controllable set if any point, belonging to this set, can reach \(\Omega_{\hat{x}} \) in \(N \) steps, while staying inside \(X \ominus \Omega_e \) despite any disturbances in \(LV \oplus LC\Omega_e \), i.e.,

\[
K_N(\Omega_{\hat{x}}) = \hat{x},
\]

\[
K_N(\Omega_{\hat{x}}) = \{ \hat{x}_0 \in X \ominus \Omega_e : \exists u_0, \ldots, u_{N-1} \in U \text{ s.t. } \hat{x}_N \in \Omega_{\hat{x}}, \forall t \in [0, \ldots, N-1] \}.
\]

For brevity, the computation of \(K_N(\Omega_{\hat{x}}) \) is referred to [12] for further details. We now present the construction of a suitable function according to the above ingredients, which will be deployed in the proposed control design. For ease of presentation, let \(\ell_N(\hat{x}) \) denote such a function defined over \(K_N(\Omega_{\hat{x}}) \). According to its construction presented in the sequel, \(\ell_N(\hat{x}) \) was proven in [19], [24] to be a convex lifting, therefore, we will call this function a convex lifting.
throughout the rest of the paper. For simplicity, the formal definition of this concept and related ones are referred to [20], [21], [23]. This function should be convex, nonnegative, equal to 0 over Ω_2, strictly positive over $K_N(\Omega_2)\setminus \Omega_2$. Furthermore, it should satisfy $\ell_N(v) > \max_{x \in K_{i-1}^t(\Omega_2)} \ell_N(\hat{x})$ for all $v \in (V(K_2(\Omega_2)) \setminus K_{i-1}(\Omega_2))$. All these requirements are of use later to prove the convergence of $\ell_N(\hat{x})$ to 0 along the trajectories, as it will be clear later. To construct $\ell_N(\hat{x})$, we start with the following initial point, for $h_0 = 0$ and a given constant $h_1 > 0$:

$$
\begin{align*}
V_0 & := \left\{ [v^T h_0]^T : v \in V(\Omega_2) \right\} \subset \mathbb{R}^{d+1} \\
V_1 & := \left\{ [v^T h_1]^T : v \in V(K_1(\Omega_2)) \right\} \cup V_0 \\
\Pi_1 & := \text{conv}(V_1)
\end{align*}
$$

$$(7)$$

The above function $\ell_1(\hat{x})$ represents the following properties.

Lemma 3.1: Function $\ell_1(\hat{x})$ is continuous, convex and piecewise affine.

The proof follows as a direct consequence of Theorems IV-3 and IV-4 in [7]. The following important properties of $\ell_1(\hat{x})$ are of use later.

Lemma 3.2: Function $\ell_1(\hat{x})$ satisfies:

1) $0 \leq \ell_1(\hat{x}) \leq h_1$ for all $\hat{x} \in K_1(\Omega_2)$;
2) $\ell_1(\hat{x}) = 0$ for $\hat{x} \in \Omega_2$;
3) $\ell_1(\hat{x}) > 0$ for $\hat{x} \in K_1(\Omega_2) \setminus \Omega_2$;
4) $\ell_1(\hat{x}) = h_1$ for $\hat{x} \in (V(K_1(\Omega_2)) \setminus \Omega_2)$.

Proof: Any point $[\hat{v}^T z]^T \in \Pi_1$ can be expressed as:

$$
\alpha_0(v), \alpha_1(v) \geq 0, \sum_{v \in V(\Omega_2)} \alpha_0(v) + \sum_{v \in V(K_1(\Omega_2))} \alpha_1(v) = 1,
$$

$$
\begin{bmatrix}
\hat{x} \\
\hat{z}
\end{bmatrix} = \sum_{v \in V(\Omega_2)} \alpha_0(v) \begin{bmatrix} v \end{bmatrix} + \sum_{v \in V(K_1(\Omega_2))} \alpha_1(v) \begin{bmatrix} v \end{bmatrix}.
$$

Accordingly, one can easily observe that

$$
0 \leq z = \sum_{v \in V(\Omega_2)} \alpha_0(v) h_0 + \sum_{v \in V(K_1(\Omega_2))} \alpha_1(v) h_1 \leq h_1,
$$

leading to claim 1). Note that the left-hand inequality becomes equality only if $\alpha_1(v) = 0$ for all $v \in V(K_1(\Omega_2))$, leading to $\hat{z} \in \Omega_2$, as stated in claim 2). Moreover, for any point $\hat{x} \in (V(K_1(\Omega_2)) \setminus \Omega_2$ expressed above, there exists at least one vertex $v \in V(K_1(\Omega_2))$ such that $\alpha_1(v) > 0$, leading to $z > 0$ and subsequently to claim 3). Finally, since $\ell_1(\hat{x})$ is convex over $K_1(\Omega_2)$, this function attains its maximal value h_1 at vertices of $K_1(\Omega_2)$. Note however that any $\hat{x} \in V(K_1(\Omega_2)) \cap \Omega_2$ can be expressed as in (8) with $\alpha_1(v) = 0$ for all $v \in V(K_1(\Omega_2))$, yielding $\ell_1(\hat{x}) = 0 < h_1$. In other words, $\ell_1(\hat{x}) = h_1$ for $\hat{x} \in V(K_1(\Omega_2)) \setminus \Omega_2$.

Lemma 3.3: To construct a convex lifting $\ell_N(\hat{x})$ as required above, we construct intermediate functions $\ell_i(\hat{x})$ for $i \in \mathbb{N}_{>0}$ such that $\ell_N(\hat{x}) = \ell_i(\hat{x})$ for all $\hat{x} \in K_i(\Omega_2)$ and for all $i \in \mathbb{N}_N$. Starting from (7), the construction of $\ell_N(\hat{x})$ is presented step-by-step in the sequel. Suppose function $\ell_i(\hat{x})$, associated with the polytopic partition $\left\{ A_j^{(i)} \right\}_{j \in T_M(i)}$ of $K_i(\Omega_2)$, is written in the form:

$$
\ell_i(\hat{x}) = (a_j^{(i)})^T \hat{x} + b_j^{(i)}
$$

for $\hat{x} \in A_j^{(i)}$. We also define the following function:

$$
\sigma_i(\hat{x}) = \max_{j \in T_M(i)} \left((a_j^{(i)})^T \hat{x} + b_j^{(i)} \right)
$$

for $\hat{x} \in \mathbb{R}^{d+1}$.

Accordingly, $\ell_{i+1}(\hat{x})$ is constructed as follows, with respect to a given constant $\epsilon > 0$:

$$
\begin{align*}
h_{i+1} & := \min_h \text{s.t. } \sigma_i(v) + \epsilon \leq h, \forall v \in V(K_{i+1}(\Omega_2)) \setminus K_i(\Omega_2) \\
V_{i+1} & := \left\{ [v^T h_{i+1}]^T : v \in V(K_{i+1}(\Omega_2)) \right\} \cup V_i \\
\Pi_{i+1} & := \text{conv}(V_{i+1}) \\
\ell_{i+1}(\hat{x}) & := \min_z \text{s.t. } [\hat{z}^T z]^T \in \Pi_{i+1}.
\end{align*}
$$

The constructions (9)–(11) are repeated until $i = N - 1$. Similar to $\ell_1(\hat{x})$ shown in Lemma 3.1, $\ell_{i+1}(\hat{x})$ for all $i \in \mathbb{N}_{N-1}$ possess the following properties:

Lemma 3.4: Functions $\ell_{i+1}(\hat{x})$ are convex, continuous, piecewise affine, for all $i \in \mathbb{N}_{N-1}$.

Proof: Since $\ell_i(\hat{x})$ is a convex, piecewise affine function, proven in Lemma 3.3, it can be written as follows:

$$
\ell_i(\hat{x}) = \max_{j \in T_M(i)} (a_j^{(i)})^T \hat{x} + b_j^{(i)}
$$

for $\hat{x} \in K_i(\Omega_2)$.

Accordingly, the representation of $\sigma_i(\hat{x})$ in (10) leads to $\sigma_i(\hat{x}) = \ell_i(\hat{x})$ for all $\hat{x} \in K_i(\Omega_2)$.

Lemma 3.5: For $i \in \mathbb{N}_N$, we obtain

$$
\begin{align*}
\begin{align*}
0 & < h_i < h_{i+1} \\
\ell_i(\hat{x}) & = h_i \text{ for } \hat{x} \in (V(K_i(\Omega_2)) \setminus K_{i-1}(\Omega_2)) \\
0 & \leq \ell_i(\hat{x}) \leq h_i \\
\ell_{i+1}(\hat{x}) & = \ell_i(\hat{x}) \text{ for } \hat{x} \in K_i(\Omega_2).
\end{align*}
\end{align*}
$$

Proof: We will prove claims 1), 2) and 3) in the same time. As proven in Lemma 3.2, for $i = 1$, claims 2) and 3) hold true and $0 < h_1$, we now prove that $h_1 < 2h$. In fact, as $\sigma_1(\hat{x})$ is convex over $K_2(\Omega_2)$, it thus attains its maximal value at vertices of $K_2(\Omega_2)$. Accordingly, there exists a vertex $v \in (V(K_2(\Omega_2)) \setminus K_1(\Omega_2))$ such that $\sigma_1(v) \geq \sigma_1(\hat{x})$ for all $\hat{x} \in K_2(\Omega_2)$. Therefore, if one chooses $\hat{x} \in V(K_1(\Omega_2))$, then (11) yields $h_2 \geq \epsilon + \sigma_1(\hat{x}) = \epsilon + \ell_1(\hat{x}) = \epsilon + h_1 > h_1$.

To prove claim 3) for $i = 2$, we consider $[\hat{x}^T z]^T \in \Pi_2$, this point can be described as below

$$
\begin{align*}
\alpha_j(v) & \geq 0, \sum_{j=0}^{2} \sum_{v \in V(K_1(\Omega_2))} \alpha_j(v) = 1 \\
[\hat{x}^T z]^T & = \sum_{j=0}^{2} \sum_{v \in V(K_1(\Omega_2))} (a_j(v))^T [v^T h_j]^T.
\end{align*}
$$

As a consequence of claim 1) for $i = 1$, we obtain

$$
0 \leq z = \sum_{j=0}^{2} \sum_{v \in V(K_1(\Omega_2))} \alpha_j(v) h_j \leq h_2,
$$
leading to claim 3) for $i = 2$.

To prove claim 2) holds true for $i = 2$, consider any point $[\hat{x}^T \ 1]^T \in \Pi_2$, this can be written as in (12). Note that $\ell_2(\hat{x})$ is convex over $K_2(\Omega_2)$, therefore $\ell_2(\hat{x})$ attains its maximal value h_2 at vertices of $K_2(\Omega_2)$). However, any point $\hat{x} \in V(K_2(\Omega_2)) \cap K_2(\Omega_2)$ can be expressed as in form (12) with $\alpha_2(v) = 0$, $\forall v \in V(K_2(\Omega_2))$, leading to $\ell_2(\hat{x}) \leq h_1 < h_2$. Roughly speaking, $\ell_2(\hat{x}) = h_2$ for $\hat{x} \in V(K_2(\Omega_2)) \cap K_1(\Omega_2)$. The proof of claims 1), 2) and 3) for $N \geq i \geq 3$ follows the same arguments as deployed above.

For claim 4), we first prove that it holds for $i = 1$. In fact, as proven in claim 1) that $h_2 \geq h_1 + \epsilon$, then the construction in (11) leads to $h_2 \geq \sigma_1(v) + \epsilon$ for all $v \in V(K_2(\Omega_2))$. Accordingly, any point $[\hat{x}^T \ 1]^T \in \Pi_1$ described as in (12) yields:

$$z = \sum_{j=0}^{2} \sum_{v \in V(K_1(\Omega_2))} \alpha_j(v)h_j$$

$$\geq 1 \sum_{j=0}^{2} \sum_{v \in V(K_1(\Omega_2))} \alpha_j(v)\sigma_1(v)$$

$$+ \sum_{v \in V(K_1(\Omega_2))} \alpha_2(v)(\sigma_1(v) + \epsilon)$$

$$\geq \sigma_1(\hat{x}) + \sum_{v \in V(K_1(\Omega_2))} \alpha_2(v)\epsilon \geq \sigma_1(\hat{x}).$$

Note that inclusion (13c) is obtained due to the convexity of $\sigma_1(\hat{x})$. Also, the right-hand inequality of (13c) becomes equality only if $\alpha_2(v) = 0$ for all $v \in V(K_2(\Omega_2))$, leading to $\hat{x} \in K_1(\Omega_2)$. Therefore, $\ell_2(\hat{x}) = \sigma_1(\hat{x}) = \ell_1(\hat{x})$ for all $\hat{x} \in K_2(\Omega_2)$. Suppose claim 4) holds until i, leading to $h_j \geq \sigma_i(v)$ for all $v \in V(K_i(\Omega_2))$ and all $j \in I_i$. We prove that it holds for $i + 1$. In fact, following the same argument of use to prove $h_2 \geq h_1 + \epsilon$, we can obtain $h_{i+1} \geq \epsilon + h_i$.

Accordingly, any point $[\hat{x}^T \ 1]^T \in \Pi_{i+1}$ can be written in the following form:

$$\alpha_j(v) \geq 0, \sum_{j=0}^{i+1} \sum_{v \in V(K_1(\Omega_2))} \alpha_j(v) = 1$$

$$[\hat{x}^T \ 1]^T = \sum_{j=0}^{i+1} \sum_{v \in V(K_1(\Omega_2))} \alpha_j(v) [v^T \ h_j]^T.$$ (14)

As a consequence, the definition of h_{i+1} in (11) yields:

$$z = \sum_{j=0}^{i+1} \sum_{v \in V(K_i(\Omega_2))} \alpha_j(v)h_j$$

$$\geq \sum_{j=0}^{i+1} \sum_{v \in V(K_i(\Omega_2))} \alpha_j(v)\sigma_i(v)$$

$$+ \sum_{v \in V(K_{i+1}(\Omega_2))} \alpha_{i+1}(v)\epsilon \geq \sigma_i(\hat{x}) + \sum_{v \in V(K_{i+1}(\Omega_2))} \alpha_{i+1}(v)\epsilon \geq \sigma_i(\hat{x}).$$

We now need to prove that the controller designed in Algorithm 1 can both guarantee the recursive feasibility and closed-loop stability of system (5), while still satisfying constraints (6). For ease of presentation, we first prove that the above controller makes function $\ell_N(\hat{x})$ strictly decreasing along the closed-loop dynamics outside Ω_2. This observation is formally stated in the following result.

Proposition 4.1. Consider controller designed in Algorithm 1 and function $\ell_N(\hat{x})$, then for any $\hat{x} \in K_N(\Omega_\hat{x}) \setminus \Omega_2$, it follows that

$$\ell_N(A\hat{x} + Bu^*(\hat{x}) + w) \leq \ell_N(\hat{x})$$

for all $w \in LV \oplus LC\Omega_e$.

Proof. First, we will prove that any $v \in \bigcup_{i \in I_0} V(K_i(\Omega_2)) \setminus \Omega_2$ satisfies $\ell_N(Av + Bu^*(v) + w) < \ell_N(v)$ for all $w \in LV \oplus LC\Omega_e$. In fact, for ease of presentation, define the following index, with respect to $\hat{x} \in K_N(\Omega_\hat{x})$, $i^*(\hat{x}) = \min_{v \in \{0,1\}}$ s.t. $\hat{x} \in K_i(\Omega_\hat{x})$. Obviously, for an $\hat{x} \in K_N(\Omega_\hat{x})$, the definition of $i^*(\hat{x})$ is unique. According to claim 2) of Lemma 3.5, for any $v \in \bigcup_{i \in I_N} V(K_i(\Omega_\hat{x})) \setminus \Omega_2$, it yields

$$\ell_N(v) = h_{i^*(v)} > 0$$

$$i^*(\hat{x}) \geq 1.$$ (17)

Also, there exists a control law $u(v) \in \Omega_K$ such that $Av + Bu(v) + w \in K_{i^*(v)-1}(\Omega_\hat{x})$, leading to

$$\ell_N(Av + Bu(v) + w) \leq h_{i^*(v)-1}, \forall w \in LV \oplus LC\Omega_e$$

as shown in claim 3) of Lemma 3.5. As a consequence of claim 1) in Lemma 3.5, inclusions (17) and (18) lead to

$$\ell_N(Av + Bu(v) + w) \leq h_{i^*(v)-1} < h_{i^*(v)} = \ell_N(v).$$

Otherwise, if $v \in V(\Omega_2)$, then there also exists a controller $u(v) = Kv$ such that $Av + Bu(v) + w \in \Omega_2$ for all $w \in \Omega_2$. Therefore, we have

$$\ell_N(Av + Bu(v) + w) \leq h_{i^*(v)} = 0.$$
Consider any point \(\hat{x} \in K_N(\Omega_{\hat{x}}) \setminus \Omega_{\hat{x}} \), there exists a region \(\mathcal{X}_j^{(N)} \) in the polytopic partition \(\{ \mathcal{X}_j^{(N)} \}_{j \in \mathcal{J}^{(N)}} \) of \(K_N(\Omega_{\hat{x}}) \) such that \(\hat{x} \in \mathcal{X}_j^{(N)} \). Accordingly, \(\hat{x} \) can be expressed as:
\[
\hat{x} = \sum_{v \in \mathcal{V}(\mathcal{X}_j^{(N)})} \alpha(v)v, \quad \alpha(v) \geq 0, \quad \sum_{v \in \mathcal{V}(\mathcal{X}_j^{(N)})} \alpha(v) = 1.
\]
This yields
\[
\ell_N(\hat{x}) = \sum_{v \in \mathcal{V}(\mathcal{X}_j^{(N)})} \alpha(v)\ell_N(v) \quad (22a)
\]
\[
> \sum_{v \in \mathcal{V}(\mathcal{X}_j^{(N)})} \alpha(v)\ell_N(A\hat{x} + Bu(v) + w) \quad (22b)
\]
\[
\geq \ell_N(A\hat{x} + B \sum_{v \in \mathcal{V}(\mathcal{X}_j^{(N)})} \alpha(v)u(v) + w) \quad (22c)
\]
\[
\geq \ell_N(A\hat{x} + Bu^*(\hat{x}) + w). \quad (22d)
\]
Note that equality (22a) holds because \(\ell_N(\hat{x}) \) is affine over \(\mathcal{X}_j^{(N)} \). Since \(\hat{x} \in K_N(\Omega_{\hat{x}}) \setminus \Omega_{\hat{x}} \), there exists at least one vertex \(v \in \mathcal{V}(\mathcal{X}_j^{(N)}) \) \(\setminus \Omega_{\hat{x}} \) such that \(\alpha(v) > 0 \). Accordingly, inclusions (19) and (20) lead to the strict inequality (22b). Moreover, inclusion (22c) holds due to the convexity of \(\ell_N(\hat{x}) \). Finally, inequality (22d) is obtained because of \(u(v) \in \mathcal{U} \) for all \(v \in \mathcal{V}(\mathcal{X}_j^{(N)}) \) and the convexity of \(\mathcal{U} \).

The proof is complete.

Proposition 4.2: Consider controller designed in Algorithm 1 and function \(\ell_N(\hat{x}) \), then for any \(\hat{x} \in \Omega_{\hat{x}} \), it yields
\[
\ell_N(A\hat{x} + Bu^*(\hat{x}) + w) = \ell_N(\hat{x}) = 0, \quad \forall w \in LV \oplus LC\Omega_e.
\]

Proof: Due to the robust positive invariance of \(\Omega_{\hat{x}} \), for any \(\hat{x} \in \Omega_{\hat{x}} \), it yields for all \(w \in LV \oplus LC\Omega_e \),
\[
A\hat{x} + Bu^*(\hat{x}) + w = (A + BK)\hat{x} + w \in \Omega_{\hat{x}}.
\]
Accordingly, claim 2) of Lemma 3.2 leads to
\[
\ell_N(A\hat{x} + Bu^*(\hat{x}) + w) = 0, \quad \forall w \in LV \oplus LC\Omega_e.
\]

The proof is complete.

The main results of the paper are presented in the sequel.

Theorem 4.3: Consider system (5) subject to constraints (6). Then, for any initial point \(\hat{x}_0 \in K_N(\Omega_{\hat{x}}) \), controller designed in Algorithm 1 guarantees the recursive feasibility and robust stability.

Proof: The recursive feasibility is guaranteed by suitable \(\gamma < 1 \) according to Propositions 4.1 and 4.2. Moreover, Proposition 4.1 shows that \(\ell_N(\hat{x}_k) \) is strictly decreasing along the closed-loop dynamics outside \(\Omega_{\hat{x}} \), it is also bounded in \([0, h_N]\), therefore \(\{ \ell_N(\hat{x}_k) \}_{k=0}^{\infty} \) is convergent to 0. As a consequence, \(\hat{x}_k \) converges to \(\Omega_{\hat{x}} \) as time tends to infinity, leading to robust stability of system (5).
VI. CONCLUSIONS

This paper presented a method for robust output feedback control of linear systems affected by both state and output additive disturbances. The method made use of a suitable convex lifting, which was shown to be strictly decreasing along the closed-loop dynamics outside a given robust positively invariant set. Accordingly, the closed-loop dynamics were shown to be convergent to this invariant set, leading to robust stability. The method was shown to only require solving a linear program at each sampling instant. Finally, a numerical example was considered to illustrate the method.

REFERENCES

[22] ——, “Robust control design based on convex liftings,” in the 8th IFAC Symposium on Robust Control Design, 2015.