New model order selection in large dimension regime for complex elliptically symmetric noise - Archive ouverte HAL Access content directly
Conference Papers Year :

New model order selection in large dimension regime for complex elliptically symmetric noise

(1) , (2, 1) , (3)
1
2
3

Abstract

This paper presents a new model order selection technique for signal processing applications related to source localization or subspace orthogonal projection techniques in large dimensional regime (Random Matrix Theory) when the noise environment is Complex Elliptically Symmetric (CES) distributed, with unknown scatter matrix. The proposed method consists first in estimating the Toeplitz structure of the background covariance matrix. In a second step, after a whitening process, the eigenvalues distribution of any Maronna's M-estimators is exploited, leading to the order selection. Simulations made on different kinds of CES noise as well as analysis of real hyperspectral images demonstrate the superiority of the proposed technique compared to those of Akaike Information Criterion and the Minimum Description Length.
Fichier principal
Vignette du fichier
New model order selection in large dimension regime for complex elliptically symmetric noise.pdf (297.26 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01692642 , version 1 (27-03-2020)

Identifiers

Cite

Eugénie Terreaux, Jean-Philippe Ovarlez, Frédéric Pascal. New model order selection in large dimension regime for complex elliptically symmetric noise. 25th European Signal Processing Conference (EUSIPCO 2017), Aug 2017, Kos Island, Greece. ⟨10.23919/EUSIPCO.2017.8081376⟩. ⟨hal-01692642⟩
146 View
84 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More