Superlinear convergence using block preconditioners for the real system formulation of complex Helmholtz equations

Abstract : Complex-valued Helmholtz equations arise in various applications, and a lot of research has been devoted to finding efficient preconditioners for the iterative solution of their discretizations. In this paper we consider the Helmholtz equation rewritten in real-valued block form, and use a preconditioner in a special two-by-two block form. We show that the corresponding preconditioned Krylov iteration converges at a mesh-independent superlinear rate.
Type de document :
Article dans une revue
Journal of Computational and Applied Mathematics, Elsevier, 2018, 340, pp.424-431. 〈10.1016/j.cam.2018.01.029〉
Liste complète des métadonnées

https://hal-centralesupelec.archives-ouvertes.fr/hal-01708720
Contributeur : Frédéric Magoulès <>
Soumis le : mercredi 14 février 2018 - 09:04:34
Dernière modification le : vendredi 29 juin 2018 - 11:49:39

Identifiants

Citation

Owe Axelsson, János Karátson, Frédéric Magoulès. Superlinear convergence using block preconditioners for the real system formulation of complex Helmholtz equations. Journal of Computational and Applied Mathematics, Elsevier, 2018, 340, pp.424-431. 〈10.1016/j.cam.2018.01.029〉. 〈hal-01708720〉

Partager

Métriques

Consultations de la notice

123