O. Axelsson, Iterative Solution Methods, 1994.

O. Axelsson, S. Farouq, and M. Neytcheva, A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic control, J. Comput. Appl. Math, vol.310, pp.5-18, 2017.

O. Axelsson and J. Karátson, Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators, Numer. Math, vol.99, issue.2, pp.197-223, 2004.

O. Axelsson and J. Karátson, Mesh independent superlinear PCG rates via compactequivalent operators, SIAM J. Numer. Anal, vol.45, issue.4, pp.1495-1516, 2007.

O. Axelsson, J. Karátson, and F. Magoules, Superlinear convergence under complex shifted Laplace preconditioners for Helmholtz equations

O. Axelsson, M. Neytcheva, and B. Ahmad, A comparison of iterative methods to solve complex valued linear algebraic systems, Numer. Algor, vol.66, pp.811-841, 2014.

Y. A. Erlangga, C. Vuik, and C. W. Oosterlee, A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput, vol.27, issue.4, pp.1471-1492, 2006.

O. G. Ernst and M. J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, Numerical Analysis of Multiscale Problems

T. Y. Graham, O. Hou, R. Lakkis, and . Scheichl, Proceedings of an LMS Durham Symposium 2010, vol.83, 2012.

M. J. Gander, I. G. Graham, and E. A. Spence, Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?, Numer. Math, vol.131, pp.567-614, 2015.

M. Gander, F. Magoulès, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comp, vol.24, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00624495

R. Hiptmair and . Operator-preconditioning, Computers and Mathematics with Applications, vol.52, pp.699-706, 2006.

P. A. Krutitskii, The impedance problem for the propagative Helmholtz equation in interior multiply connected domain, Comp. Math. Appl, vol.46, pp.1601-1610, 2003.

I. Livshits, Use of Shifted Laplacian Operators for Solving Indefinite Helmholtz Equations, Numerical Mathematics: Theory, Methods and Applications, vol.8, pp.136-148, 2015.

F. Magoulès, K. Meerbergen, and J. Coyette, Application of a domain decomposition method with Lagrange multipliers to acoustic problems arising from the automotive industry, J. Comput. Acoustics, vol.8, issue.3, pp.503-521, 2000.

I. Moret, A note on the superlinear convergence of GMRES, SIAM J. Numer. Anal, vol.34, pp.513-516, 1997.

Y. Saad, Iterative Methods for Sparse Linear Systems, 2003.

V. Simoncini and D. B. Szyld, On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods, SIAM Review, vol.47, issue.2, pp.247-272, 2005.

R. Winter, Some superlinear convergence results for the conjugate gradient method, SIAM J. Numer. Anal, vol.17, pp.14-17, 1980.

O. Widlund, A Lanczos method for a class of non-symmetric systems of linear equations, SIAM J. Numer. Anal, vol.15, pp.801-812, 1978.