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Learning Anonymized Representations with
Adversarial Neural Networks

Clément Feutry, Pablo Piantanida, Yoshua Bengio, and Pierre Duhamel

Abstract

Statistical methods protecting sensitive information or the identity of the data owner have become

critical to ensure privacy of individuals as well as of organizations. This paper investigates anonymization

methods based on representation learning and deep neural networks, and motivated by novel information-

theoretical bounds. We introduce a novel training objective for simultaneously training a predictor over

target variables of interest (the regular labels) while preventing an intermediate representation to be

predictive of the private labels. The architecture is based on three sub-networks: one going from input

to representation, one from representation to predicted regular labels, and one from representation to

predicted private labels. The training procedure aims at learning representations that preserve the relevant

part of the information (about regular labels) while dismissing information about the private labels which

correspond to the identity of a person. We demonstrate the success of this approach for two distinct

classi�cation versus anonymization tasks (handwritten digits and sentiment analysis).

Index Terms

Deep learning, Representation learning, Privacy, Anonymization, Information theory, Supervised

feature learning, Adversarial neural networks, Image classi�cation, Sentiment analysis.

I. I NTRODUCTION

In recent years, many datasets containing sensitive information about individuals have been released

into public domain with the goal of facilitating data mining research. Databases are frequently anonymized

by simply suppressing identi�ers that reveal the identities of the users, like names or identity numbers.
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However, even these de�nitions cannot prevent background attacks, in which the attackers already know

something about the information contained in the dataset. A popular approach known as differential

privacy [Dwork, 2006] offers provable privacy guarantees. Intuitively, it uses random noise to ensure that

the mechanism outputting information about an underlying dataset is robust to any change of one sample,

thus protecting privacy.

In this paper we address the interplay between deep neural networks and statistical anonymization

of datasets. We focus on the following fundamental questions:What conditions can we place to learn

anonymized (or sanitized) representations of a dataset in order to minimize the amount of information

which could be revealed about the identity of a person? What is the effect of sanitization on these

procedures?The line of research we investigate is based on privacy-preserving statistical methods, such

as learning differentially private algorithms [Abadi et al., 2016]. The main goal of this framework is to

enable an analyst to learn relevant properties (e.g., regular labels) of a dataset as a whole while protecting

the privacy of the individual contributors (private labels which can identify a person). This assumes the

database is held by a trusted person who can release freely information about regular labels, e.g., in

response to a sequence of queries, and used for many new purposes.

A. Related work

The literature in statistics and computer science on anonymization and privacy is extensive; we

discuss only directly relevant work here (see [Chen et al., 2009] and references therein). The k-anonymity

framework has been introduced by [Sweeney, 2002] with the purpose of processing databases where

each entry is a different person, and each person of the database is described through many features.

Several other frameworks linked to k-anonymity such as l-diversity in [Machanavajjhala et al., 2006] and

t-closeness in [Li et al., 2007] have been developed a few years later. The main similarity between our

framework and k-anonymity is that we do not consider any background knowledge like in k-anonymity.

However, the fundamental differences rely on our statistical treatment of the anonymization problem and

instead of having only one version of each attribute (or label), we require multiple statistical versions of

the same attribute for each individual. Additionally, databases with k-anonymity contain data that clearly

identi�es a person whereas we consider datasets where identi�cation can be learned, so we look for data

transformations which discard identifying features from the data.

A major challenge in addressing privacy guarantees is ot determine and control the balance between

statistical ef�ciency and the level of privacy, which requires itself a careful mathematical but also

meaningful de�nition. Typically, these techniques depend on how the data are released and the literature

contains various approaches to this vast problem. The notion of differential privacy has been successfully
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introduced and largely studied in the literature [Dwork, 2008]. From a statistical perspective, convergence

rates for minimax risk for problems in which the data must be kept con�dential even from the

learner have been reported in [Smith, 2008] and [Duchi et al., 2014]. In the machine learning literature,

[Wasserman and Zhou, 2010] and [Chaudhuri et al., 2011] develop differentially private empirical risk

minimization algorithms, and [Bassily et al., 2014] and [Wang et al., 2016] study similar statistical and

sample complexity of differentially private procedures. [Chen and Zhong, 2009] and [Yuan and Yu, 2014]

presented a privacy-preserving distributed algorithm of backpropagation which allows a neural network

to be trained without requiring either party to reveal her data to the other. [Abadi et al., 2016] studied

differential privacy based on deep neural nets where each adjacent databases is a set of image-label pairs

that differs in a single entry, that is, if one image-label pair is present in one set and absent in the other.

B. Contributions

We investigate anonymization from a perspective which is related but different from that of differential

privacy. The main difference relies on the condition on the information release (sanitize) mechanism

which in our case depends on the dataset itself. Additionally, differential privacy introduces randomized

predictors whereas our method (after training is accomplished) induces a deterministic algorithm. We do

not provide a privacy level of the dataset or of a method. Instead we try to hide information about the

private labels which is implicitly present in a dataset while preserving as much information as possible

about the regular relevant labels involved. For this purpose, we introduce a novel training objective

and framework inspired by Generative Adversarial Networks (GAN) by [Goodfellow et al., 2014] and

by the domain adaptation framework of [Ganin and Lempitsky, 2015]. We propose an ef�cient way of

optimizing an information-theoretic objective by deriving backpropagation signals through a competitive

process involving three networks, illustrated in Figure 1: an encoder network which is a common trunk

mapping inputX to a representationU, as well as two branch networks takingU as input, i.e. a predictor

for the regular labelsY and a predictor for the private labelsZ . While the encoder is trained to help the

predictor ofY as much as possible, it is also trained to prevent theZ predictor from extracting private

information fromU, leading to a trade-off between these two objectives.

This architecture is similar to that of [Ganin and Lempitsky, 2015], initially introduced in the context

of domain adaptation. The goal of domain adaptation is to train a loss on a dataset and be able to apply it

ef�ciently on a different but related dataset. Our contributions on top of this architecture are the following.

First, we introduce a series of mathematical results based on information-theoretical considerations. Second,

they motivate a novel training objective which differs from that of [Ganin and Lempitsky, 2015] in two

main ways: (a) the adversarial network tries to classify among a large number of person's identities (instead
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of among two domains), and (b) the training objective is designed to lead to more robust training, avoiding

the numerical dif�culties which arise if the adversarial cost only tries to increase the cross-entropy of the

private-labels predictor. These numerical dif�culties arise in particular because minus the cross-entropy

(of the private-labels predictor) does not have lower bound, which can lead to very large gradients. A key

insight to �x this problem is that such poor behavior happens when the cross-entropy is actually worse

than if the private-label predictor was simply producing a uniform distribution over the person's identities,

and there is no need to make that predictor have a cross-entropy which is worse than a random guessing

predictor.

Notation and conventions

Upper-case letters denotes random variables (RVs) and lower-case letters realizations.EP [�] denotes the

expectation w.r.t.P the probability distribution (PD). LetP(X ) denote the set of all PDs inX . All empirical

PDs computed from samples are denoted byP̂X . PX is the vector length that contains the values ofPX . j�j is

used for the usual absolute value and cardinality of a set, and withh�; �i the canonical inner product. All loga-

rithms are taken with basee. The information measures are [Csiszar and Korner, 1982]: entropyH(PX ) :=

EPX [� logPX (X )]; conditional entropyH(PY jX jPX ) := EPX PY j X

�
� logPY jX (Y jX )

�
; mutual informa-

tion I (PX ; PY jX ); relative entropy: D(PX kQX ) andconditional relative entropy: D(PUjX kQUjX jPX ).

II. STATISTICAL MODEL AND PROBLEM DEFINITION

We introduce our model from which sanitized representations will be learned. We develop a precise

formalization of the problem and derive an information-theoretic criterion that together GAN provide a

tractable supervised objective to guide the learning of constrained representations.

A. Learning model and problem de�nition

In this work, we are concerned with the problem of pattern classi�cation which is about predicting

the regular label (public information) of an observation based on high-dimensional representations. An

observation is a samplex 2 X presented to the learner about a target concepty 2 Y (the regular label)

and the user IDz 2 Z (the private label). This consists of a typical supervised learning setup with a

training dataset ofn i.i.d. tuples:Dn := f (x1; y1; z1) � � � (xn ; yn ; zn )g, sampled according to an unknown

distributionPXY Z . We consider learning of a representation from examples ofPXY Z . We would like to

�nd a (possibly stochastic) transformationQUjX that maps raw dataX to a higher-dimensional (feature)

spaceU:

PY Z � (Y; Z)
PX j Y Z

�����!
(unknown)

X
QU j X

���������!
(encoder/sanitize)

U:
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This problem can be divided into that of simultaneously �nding a (randomized) deep encoderQUjX :

X ! P (U) and a soft-classi�erQŶ jU : U ! P (Y) which maps the representation to a distribution

on the label spaceY. Our ultimate goal is to learnQUjX from a deep neural network to perform this

classi�cation task while preventing any classi�erQẐ jU : U ! P (Z ) from learning the private labelZ

from the representationU. In other words, our representation model must learn invariant features with

respect to private labels. We will formalize our problem as being equivalent to that of optimizing a

trade-off between the misclassi�cation probabilities so it would be convenient to precisely de�ne this

notion:

De�nition 1: The probability of misclassi�cation of the induced decision rule from an encoderQUjX

and a classi�erQŶ jU with respect to the distributionPXY is given by

PE
�
QUjX ; QŶ jU

�
:= 1 � EPXY QU j X

h
QŶ jU (Y jU)

i
:

An upper bound will be used to rewrite this intractable objective into thecross-entropy riskde�ned

below:

De�nition 2 (Cross-entropy loss):Given two distributionsQUjX : X ! P (U) andQŶ jU : U ! P (Y),

de�ne the average (over representations)cross-entropy lossas:

`
�
QUjX (�jx); QŶ jU (yj�)

�
:=



QUjX (�jx); � logQŶ jU (yj�)

�

= EQU j X = x

h
� logQŶ jU (yjU)

i
: (1)

As usual, we shall measure the expected performance of(QUjX ; QŶ jU ) via therisk:

L (QŶ jU ; QUjX ) := EPXY

�
`
�
QUjX (�jX ); QŶ jU (Y j�)

��
:

We can now provide an operational de�nition of what would make a good representationU in the

anonymization problem. A representation should be useful for minimizing the misclassi�cation probability

of the public task of interest with regular labelsY while bounding from below, whatever classi�erQẐ jU

is chosen, the probability of misclassi�cation of the identityZ , which is formally introduced below:

De�nition 3 (Learning with anonymization):Consider the following constrained pattern classi�cation

problem:

min
(QU j X ;Q Ŷ j U )2F

n
PE

�
QUjX ; QŶ jU

�
: min

Q Ẑ j U : U!P (Z )
PE

�
QUjX ; QẐ jU

�
� 1 � "

o
; (2)

for a prescribed probability1=jZj � " < 1, where the minimization is over the set of restricted encoders

and classi�ers(QUjX ; QŶ jU ) 2 F according to a model classF .
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The above expression requires representations with(1 � " )-approximate guarantees (over all possible

classi�ers) w.r.t. the misclassi�cation probability of the private labels. It is not dif�cult to see that" can

be replaced by a suitable positive multiplier� � � (" ) yielding an equivalent objective:

min
n

PE
�
QUjX ; QŶ jU

�
� � � PE

�
QUjX ; Q?

Ẑ jU

� o
; (3)

whereQ?
Ẑ jU

is the minimizer ofPE
�
QUjX ; QẐ jU

�
. Evidently, expression(3) does not lead to a tractable

objective for training(QUjX ; QŶ jU ). However, it suggests a competitive game between two players: an

adversary trying to infer the private labelsZ from our representationsU, by minimizingPE
�
QUjX ; QẐ jU

�

over all possibleQẐ jU , and a legitimate learner predicting the regular labelsY , by optimizing a classi�er

QŶ jU over a prescribed model classF . We can trade-off these two quantities via the representation

(encoder) modelQUjX . This key idea will be further developed in the next section through an adversarial

framework to guide learning of all involved parameters in the classF .

B. Bounds on the probability of misclassi�cation

In order to derive a tractable surrogate to(2), e.g., by relating the probabilities of misclassi�cation

to the corresponding cross-entropy losses, it is convenient to �rst introduce the rate-distortion func-

tion [Cover and Thomas, 2006].

De�nition 4: The rate-distortion function of a RVZ 2 Z with distortiond(z; u) := 1 � QẐ jU (zju) is

de�ned as:

R Z;Q Ẑ j U
(D ) := min

PÛ j Z : Z !P (U)
EP

ÛZ
[1� Q Ẑ j U (Z jU)] � D

I
�
PZ ; PÛ jZ

�
;

wherePÛZ = PÛ jZ PZ . Furthermore, there existsD > 0 s.t. R Z;Q Ẑ j U
(D ) is �nite [ Csisźar, 1974], let the

minimum beDmin with Rmax := R Z;Q Ẑ j U
(D ) asD ! Dmin + .

Moreover, it is easy to show thatR Z;Q Ẑ j U
(D ) is positive, monotonically decreasing and convex. Let us

de�ne:

R � 1
Z;Q Ẑ j U

(I ) := inf
�

D 2 R� 0 : R Z;Q Ẑ j U
(D ) � I

	

which is known as thedistortion-ratefunction. The functionI 7! R � 1
Z;Q Ẑ j U

(I ) is positive and monotonically

decreasing. The following lemma provides bounds on the misclassi�cation probability via mutual

information and the cross-entropy loss (proof available as supplementary material).

Lemma 1:The probabilities of misclassi�cationPE(QŶ jU ; QUjX ) andPE(QẐ jU ; QUjX ) induced by an

encoderQUjX : X ! P (U) and two arbitrary classi�ersQŶ jU : U ! P (Y) andQẐ jU : U ! P (Z ) are

bounded by

PE(QẐ jU ; QUjX ) � R � 1
Z;Q Ẑ j U

�
I (PZ ; QUjZ )

�
; (4)
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PE(QŶ jU ; QUjY ) � 1 � exp
�

�L (QŶ jU ; QUjX )
�

; (5)

whereQUjZ (ujz) =
P

x2X QUjX (ujx)PX jZ (xjz).

Observe that the lower bound in(4) is a monotonically decreasing function of the mutual information

I (PZ ; QUjZ ). This implies that any limitation of the mutual information between private labelsZ and

representationsU will bound from below the probability of misclassi�cation of private labels, whatever

classi�er QẐ jU is chosen. On the other hand, the upper bound in(5) shows that the cross-entropy loss

L (QŶ jU ; QUjX ) can be used as a surrogate to optimize the misclassi�cation probability of regular labels,

which motivates the cross-entropy loss. The practical relevance of these information-theoretic bounds is

to provide a mathematical objective for browsing the trade-off(2) between all feasible misclassi�cation

probabilitiesPE
�
QUjX ; QŶ jU

�
as a function of the prescribed(1 � " ) probability. Therefore, the learner's

goal is to select an encoderQUjX and a classi�erQŶ jU by minimizing jointly the risk and the mutual

information, leading to tightening of both bounds in Lemma 1.

Nevertheless, sincePXY Z is unknown the learner cannot directly measure neither the risk in(5) nor

the mutual information in(4). It is common to measure the agreement of a pair of candidates with a

training data set based on the empirical data distributionP̂XY Z . This yields an information-theoretic

objective, being a surrogate of expression (3):

min
n

L emp(QŶ jU ; QUjX ) + � � I (P̂Z ; Q̂UjZ )
o

; (6)

for a suitable multiplier� � 0, whereL emp(QŶ jU ; QUjX ) denotes theempirical riskas in De�nition 2

taking the average w.r.t.̂PXY and the mutual information must be evaluated usingQ̂Z jU as being the

posterior according toQUjX P̂XZ . As a matter of fact,(6) may be independently motivated by a rather

different problem studying distortion-equivocation trade-offs [Villard and Piantanida, 2013].

C. Representation learning with anonymization

We performed initial experiments in which the training objective was similar to the one introduced by

[Ganin and Lempitsky, 2015] and found that training was unstable and led to a poor trade-off between

the degree of anonymity (with the classi�cation error on private labelsZ as a proxy) and the accuracy on

the regular task (predicting regular labelsY ). This led us to change both the training objective and the

training procedure, compared to those proposed by [Ganin and Lempitsky, 2015]. The new adversarial

training objective is presented below, starting from the information-theoretic surrogate presented above in

expression (6).

A careful examination of expression(6) shows that it cannot be optimized since the posterior distribution

Q̂Z jU is still not computable in high dimensions. We will further looser this surrogate by upper bounding
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the mutual informationI (P̂Z ; Q̂UjZ ) = H(P̂Z ) � H (Q̂Z jU jQ̂U ). Theempirical entropyof Z can be upper

bounded as follows:

H(P̂Z ) � EP̂Z

�
� logQ̂Ẑ (Z )

�
(7)

� EP̂Z
EQ̂U

�
� logQẐ jU (Z jU)

�
(8)

� EP̂Z
EP̂X

�
`
�
QUjX (�jX ); QẐ jU (Z j�)

��
(9)

:= L obj
emp(QẐ jU ; QUjX ); (10)

where(7) follows since the relative entropy is non-negative;(8) follows by the convexity oft 7! � log(t)

and(9) follows from the de�nition of the cross-entropy loss. We will also resort to an approximation of

the conditional entropyH(Q̂Z jU jQ̂U ) by an adequate empirical cross-entropy risk:

H(Q̂Z jU jQ̂U ) � EP̂XZ

�
`
�
QUjX (�jX ); QẐ jU (Z j�)

��
;

� L emp(QẐ jU ; QUjX ) (11)

which assumes a well-selected classi�erQẐ jU , i.e., the resulting approximation errorD
�
Q̂Z jU kQẐ jU jQ̂U

�

w.r.t. the exactQẐ jU is small enough. By combining expressions (10) and (11), and taking the absolute

value, we obtain:

I (P̂Z ; Q̂UjZ ) -
�
�
�L obj

emp(QẐ jU ; QUjX ) � L emp(QẐ jU ; QUjX )
�
�
�

that together with(6) leads to our tractable objective for learning, which is an approximation of expression

(6), being the surrogate of (3), i.e., the objective of interest:

L � (QŶ jU ; QẐ jU ; QUjX ) := L emp(QŶ jU ; QUjX )

+ � �
�
�
�L obj

emp(QẐ jU ; QUjX ) � L emp(QẐ jU ; QUjX )
�
�
� ; (12)

for a suitable classi�erQẐ jU and multiplier � � 0, being a meta-parameter that controls the sensitive

trade-off between data anonymity and statistical ef�ciency. Consequently, we can minimize and maximize

the incompatible objectives of thecross-entropy lossesin (12). Intuitively, the data representations we

wish to achieve fromQUjX must blur the private labelsZ from the raw dataX while preserving as much

as possible relevant information about the regular labelsY . It is worth to mention that(10) corresponds

to the loss of a `random guessing' classi�er in which the representationsU are independent of private

labelsZ . As a consequence, training encodersQUjX to minimize (12) enforces the best classi�erQẐ jU

(private labels) to get closer –in terms of loss– to the random guessing classi�er.
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D. Estimation of the probability of misclassi�cation

The following proposition provides an interesting lower bound on the estimated (e.g. over a choice of test-

set) misclassi�cation probability of any classi�er attempting to learnZ from the released representations:

Proposition 1:Let QUjX be a sanitize encoder and̂PXZ be an empirical distribution over a choice of a

data-setDn := f (x1; z1) � � � (xn ; zn )g. Then, the probability of misclassi�cation of private labels satis�es:

P̂E(QẐ jU ; QUjX ) := 1 �
1
n

nX

i =1

EQU j x i

h
QẐ jU (zi jU)

i

� g� 1
�

log jZj � I
�
P̂Z ; Q̂UjZ

� �
; (13)

uniformly over the choice ofQẐ jU , where for 0 � t � 1: g(t) := t � log (jZj � 1) + H (t) with

H (t) := � t log(t) � (1 � t) log(1 � t) and 0 log 0 := 0 . The functiong� 1(t) := 0 for t < 0 and, for

0 < t < log jZj , g� 1(t) is a solution of the equationg(" ) = t w.r.t. " 2
�
0; 1� 1=jZj

�
; this solution exists

since the functiong is continuous and increasing on
�
0; 1� 1=jZj

�
andg(0) = 0 , g

�
1� 1=jZj

�
= log jZj .

The proof of this proposition follows by applying Lemma 2.10 in [Tsybakov, 2008] from which we can

bound from below the misclassi�cation probability and will be omitted.

The importance of expression(13) is that it provides a concrete measure for the anonymization

performance of the representations. It bounds from below the misclassi�cation probability over the choice

of the classi�erQẐ jU , using the sanitize representations. The right hand side is a quantity that involves

the empirical mutual information between the representations and the private labels. It should be pointed

out that since in many casesH(P̂Z ) � H (PZ ) � log jZj , assumingPZ is uniformly distributed over the

setZ , then:

inf
Q Ẑ j U

P̂E(QẐ jU ; QUjX ) % g� 1
�

H
�
Q̂Z jU jQ̂U

� �
; (14)

and using our approximation in(11) the lower bound in(14) leads to an effective and computable lower

bound on the misclassi�cation probability of the private labels. However, in order to provide statistical

guarantees on(14), we need to study con�dential bounds onD(Q̂Z jU kQẐ jU jQ̂U ) � � which goes beyond

the scope of this paper.

III. A NONYMIZATION WITH DEEPNEURAL NETWORKS

Our ultimate goal is to learn parametersRdc 3 � c 7! QUjX of a deep encoder and parameters

Rdr 3 � r 7! QŶ jU andRdp 3 � p 7! QẐ jU of the classi�ers,(dc; dr ; dp) being the parameters' dimensions.

In the following, we introduce a simpli�ed notation to rewrite the objective (12) as:

� � � arg min
� 2 �

�
L r (� c; � r ) � � �

�
�L obj

p (� c; � p) � L p(� c; � p)
�
� 	 ; (15)
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for a suitable hyperparameter� � 0 to tune the trade-off between regular and private tasks, where all

involved parameters are simply denoted by� 3 � := ( � c; � r ; � p) with

L r (� c; � r ) � L emp(QŶ jU ; QUjX ); (16)

L p(� c; � p) � L emp(QẐ jU ; QUjX ); (17)

L obj
p (� c; � p) � L obj

emp(QẐ jU ; QUjX ): (18)

Assume a training setDn of size n, where each element of the dataset(x i ; yi ; zi ) is composed of

x i 2 X � Rm is a real vector of sizem, the regular label of the sampleyi 2 Y and private label of the

samplezi 2 Z .

A. Adversarial training objective

Each classi�er branch of the proposed architecture, i.e.,QŶ jU andQẐ jU , is trained to minimize the

associated cross-entropy loss, whereas the encoderQUjX will be trained to simultaneously minimize the

cross-entropy loss on the prediction ofY while maximizing an adversarial loss de�ned with respect to

the private label predictorZ .

Each sample inputx i produces a representationu i � QUjX = x i
and outputs two probability vectors

Q Ŷ jU (�ju i ) andQ Ẑ jU (�ju i ) as soft predictions of the true labels: the regular oneyi and the private one

zi , respectively. The expressions of the losses we found in(16) and(17) are two cross-entropies computed

over the whole training set:

L r (� c; � r ) =
1
n

nX

i =1



e(yi ); � logQ Ŷ jU (�ju i )

�
; (19)

L p(� c; � p) =
1
n

nX

i =1



e(zi ); � logQ Ẑ jU (�ju i )

�
; (20)

with e(yi ) ande(zi ) being “one-hot” vectors (yi component is 1 and the others 0) of the true labels of

samplei = [1 : n].

Let us now consider the adversarial objective. There are too many possible networks that mismatch

the private labels and maximize the corresponding cross-entropy. In particular the cross-entropy loss

on the private label predictor could be increased arbitrarily by making it produce a wrong answer with

high probability, which would not make much sense in our context. Hence, we want to maximize this

cross-entropy but not more than that of the cross-entropy of a predictor which would be unable to

distinguish among the identities, i.e., with a posterior distribution approximatly equal toP̂Z :

L obj
p (� c; � p) =

1
n

nX

i =1



P̂Z ; � logQ Ẑ jU (�ju i )

�
; (21)
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which is indeed expression(18). This arti�cial loss, formally introduced by our surrogate(12), denotes

the cross-entropy between the vector of empirical estimates of probabilitiesP̂Z and the predictionŝz . By

forcing private task predictions to follow the estimated probability distribution of the private labels (in

many cases close to equiprobable labels) the model output is expected to be as bad as random guessing

private labels. Keep in mind that random guessing is a universal lower bound for anonymization. In

fact, if the private label predictor had a cross-entropy loss higher than that of the random guessing

predictor, the surrogate indicates we mustreduceits loss. This is consistent with the adversarial training

objective in(15). Notice that if our predictions follow the random guessing distribution then the term
�
�L obj

p (� c; � p) � L p(� c; � p)
�
� approaches zero.

x1

x2

x3

Gradient reversal layer

QŶ jU (1ju i )

QŶ jU (2ju i )

QŶ jU (3ju i )

QŶ jU (4ju i )

QẐ jU (1ju i )

QẐ jU (2ju i )

QẐ jU (3ju i )

QẐ jU (4ju i )

S
of

tm
ax

S
of

tm
ax

x Encoder

regular

branch
private

branch

Fig. 1. Architecture of the proposed deep neural network.

B. Training procedure

We have found best results according to the following adversarial training procedure, described in

Figure 1.

1) The encoder and regular label predictor are jointly pre-trained (as a standard deep network) to

minimize the regular label cross-entropy (eq. 19).

2) The encoder is frozen and the private label predictor is pre-trained to minimize its cross-entropy

(eq. 20).
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Fig. 2. Samples of preprocessed pen-digits (images on the left), JAFFE (images on the right) and FERG (images at the center).

3) Adversarial training is organized by alternatively either training the branch predictors or training

the encoder:

a) SampleN training examples and update both branch predictors with respect to their associated

cross-entropies, using minibatch SGD (i.e. theN examples are broken down into minibatches,

with one update after each minibatch).

b) SampleN training examples and update the encoder to minimize the adversarial objective

(eq. 15), again using minibatch SGD.

In our experiments, we simply pickedN as the size of the training set, so we alternated between the

two kinds of updates after several epochs on each. We used minibatch SGD with Nesterov momen-

tum [Nesterov, 2007].

IV. EXPERIMENTAL RESULTS

A. Presentation of the datasets

Classi�cation of digits (Pen-digits database):We selected a simple enough dataset, named Pen-digits

from Alpaydin [Alimoglu and Alpaydin, 1996]. This dataset is interesting to study anonymization because

it has double labels (the user IDs of writers and the digit categories) and it has many examples of each

writer. The dataset provides the coordinates of digitally acquired pen movements of 44 persons (30 are

involved in the training set and 14 in the test-set) writing digits from 0 to 9. We only used the training

set which was randomly split into training, validation and test data sets (size 5494, 1000 and 1000,

respectively), sharing images of the same 30 persons. At the time of collecting this dataset, inconclusive

digits were removed. This dataset contains 25 times each digits for each person minus the few discarded
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digits. The dataset is split in a training part and and a test part. The raw data is a set of pen trajectories.

It is preprocessed in several steps. The coordinates of all the curves corresponding to a single sample

were normalized in order to center the image and reduce variability by making it �t a 80x80 image. Each

image was then down-sampled into a 20x20 image. The network has 700 neurons per layer and a dropout

probability pout = 0 :1 is selected. The encoder is composed of 8 layers and each branch is formed by 3

layers, with all layers except the branch outputs having recti�ed linear units as non-linearity. The last

layer of each branch is asoftmaxoutput layer.

Sentiment analysis (FERG database):The FERG database [Aneja et al., 2016] contains 55767 annotated

face synthetic images of six stylized characters modeled using the MAYA software. This database has

256x256 images depicting the seven following facial expressions (or feelings): “neutral”, “anger”, “fear”,

“surprise”, “sadness”, “joy” and “disgust”. For each expression and character, there is between 911 and

2088 images. Original colour images have been pre-processed into a 8-bit grey-scale 50x50 images. The

network is composed of 1200 neurones per-layer. The encoder is composed of 5 layers and each branch is

formed by 3 layers, other network parameters remain the same as in our previous network con�guration.

Sentiment analysis (JAFFE database):The JAFFE database [Lyons et al., 1998] and [Dailey et al., 2010]

contains 213 pictures of Japanese women's faces composed of 10 different persons, where each presents

between 2 and 4 pictures per facial expression (of the seven feelings). The pictures were processed to

remove irrelevant background pixels. Pictures have been cut in order to have the bottom of the chin as the

bottom pixels line, the frontier between hair and forehead as the top pixels line, the frontier between hair

and temple as the far right and far left pixels columns. The remaining pixels in the corner that do not

belong to the face were set to black. The original pictures are 256x256 pixels and the resulting images

are 29x37 pixels. The choice of downsizing the pictures is motivated by the number of samples which

is rather small compared to the initial size of the pictures. The dataset is divided into a 139 pictures

training set and a 74 pictures test set. There is barely enough data to perform the training properly so

the training set is used as the validation set as well. This decision may be considered as fallacious but a

validation set is needed because several steps of the algorithm are optimized with the loss value or the

accuracy value on the validation set. The network used to perform the simulation over this database is a

multi-layer perceptron which is not the most ef�cient one given the small dataset. However, the main

purpose of this simulation is to provide a proof of concept for our algorithm. Despite being weak, the

overall performance on this recognition task should be suf�cient for our purpose.
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Fig. 3. Comparison of the accuracy on regular task between toggle training and simultaneous training, on the Pen-digits database,

as a function of the accuracy on the private task. Toggle training provides a better trade-off for the anonymization than the

simultaneous training. Simultaneous training enables only two regimes: either a light anonymization, with almost no trade-off,

or a strong anonymization, where a few features relevant to the regular task remain. Indeed, for a signi�cant large range of�

values, the network randomly converges to either of these extremes, which allows only to trade-off between a few accuracies (i.e.

several missing points).

B. Results analysis

We emphasize that the present method gives an anonymizer for the whole dataset, as opposed to

anonymizing a query related process or a subset of the dataset. In order to tune the anonymization, we

have trained a network for a wide range of values of� . For each of them, we compute the accurate rates

of both tasks: the private and the regular labels.

Toggle (or sequential) vs simultaneous training:The procedure we found to provide better results when

training the parameters of our deep neural nets is atoggle training, as opposed to simultaneous training

[Ganin and Lempitsky, 2015] where all updates at the encoder and at the branches occur at the same

time. With toggle training the updates are performed either at the encoder or at the branches (Figure 1).

The purpose is to let the branches of the network to keep track of the encoder updates. This method has

a key role in learning useful representations. Indeed, if classi�ers are performing as ef�ciently as possible

on their own tasks, they will feedback the most relevant information to update the encoder. In Figure 3,

we confronted the result of toggled training versus the simultaneous (or concurrent) training method. The

regular task accuracies are plotted as a function of the private task accuracy. To keep this comparison fair,
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Fig. 4. Accuracies as a function of� 2 [0; 1:5] on Pen-digits database. The horizontal black dashed line is the random guessing

classi�er over the user-ID (3:33%). It displays the trade-off that occurs on the data set, i.e., a level of anonymization is ensured at

the cost of a small performance decrease on the regular task. Dotes curve shows that eq.(14) with (11) is a reasonable estimation.

we found better to chose a lower learning rate on the encoder than on the branches. We can observe that

simultaneous training enables only two regimes: either a light anonymization, with almost no available

trade-off, or a strong anonymization, where a few features relevant to the regular task remain. Indeed,

after training with a signi�cant large range of� values, we found the network to randomly converge to

either of these extremes, that is why several points are not achievable and thus, missing in the plots.

Pen-digits database:The trade-off between these accuracies is presented in Figure 4. TheN-curve

corresponds to the test accuracy on the private task while the?-curve denotes the test accuracy on the

regular task. The doted curve denotes the estimation of the private task accuracy according to(14)

using (11) computed on the loss of the test-set. The rather good �tting indicates that(11) is a reasonable

approximation. Some interesting conclusions can be drawn from these plots. Its ordinate reads on the

right axis. The value of the accuracies of both tasks at� = 0 is interesting. Indeed, when� = 0 the

network is updated without any concern of the private task. On the other hand, the baseline for the private

task was computed separately with a dedicated network (equivalent to cascading a network similar to the

encoder and the private branch). The accuracy baseline for the private task in theses conditions was found

to be around40%. Nonetheless, Figure 4 shows a much lower accuracy because only the branch part of
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Fig. 5. Accuracies as a function of� 2 [0; 3:5] on FERG database. The horizontal black dashed line is the random guessing over

the user-ID (19:83%). The available amount of samples allow the learning of anonymized still relevant representations but at a

small cost on the regular task. For sake of clarity,� = 4 :5 is not plotted since both tasks decreased to random guessing accuracy.

the network is trying to improve the classi�cation score of the private labels, the encoder focuses in the

situation of� = 0 only on the regular part. As for the regular task, it is worth to mention that the results

may vary since randomness impact the training and thus the score as well. To average this noise, several

simulations were made for the baseline obtaining scores between97:65% and98:45%. The impact of�

is quite important and is shown by the abrupt variation over the interval� 2 [0; 1]. After this signi�cant

decrease in the accuracy of the private task, variations are slower, even so the accuracy of this task tends

to decrease. Interestingly, regarding the score of the regular task, variations are signi�cantly more tenuous.

Their interpretation only show that the increase in� does not induce any remarkable change. The impact

of the private branch on the network, if such an impact exists, is rather marginal. Interestedly, the impact

on the regular task stays contained inside the previously computed baseline bound.

FERG database:The plentiful samples in the database give really strong accuracies baselines for both

tasks:100%on the private task and98:2% on the regular task. Figure 5 shows the trade-off, the?-curve

indicates the test accuracy on the regular task which decreases from97:36% to 96:05%. The N-curve

indicates the test accuracy on the private task which decreases signi�cantly from99:97% to 63:63%. Due

to the non-uniform distribution of the samples among classes, the random guessing classi�er over the
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Fig. 6. Accuracies as a function of� 2 [0; 2:5] on JAFFE database. The horizontal black dashed line is the random guessing over

the user-ID (10%). Despite a rather small dataset, the annonymization still occurs but at the cost of a signi�cant (non-negligible)

impact on the regular task performance.

user-ID is19:83%. One should notice that the six characters have really different facial features, therefore

they are easy to identify on the original images (private task baseline100%). Yet, the representations learnt

by the network leads to a signi�cant anonymization with an acceptable cost on the regular task. Feeling

recognition and face recognition are rather entangled tasks. The observed degradation of performance

comes from the contradictory natures of both tasks, i.e. , raising the level of anonymization comes at the

cost of blurring some relevant features for the regular task. Anonymization trade-offs are strongly related

to the speci�c nature of data.

JAFFE database:We note that the anonymity induced by the structure of the network itself (� = 0 ) is

not apparent here. The accuracies of both tasks are shown in Figure 6 as a function of� . As � increases,

the anonimyzation is made more apparent, i.e., theN-curve is decreasing from44:59% to 21:62%. It is

clear that the trade-off is stronger on this dataset than on the previous one which can be observed from

the regular task (?-curve), feeling recognition, that declined from39:19% to 25:68%. This signi�cant

performance degradation is due to the contradictory natures of the tasks but also to the limited samples,

which emphasizes that encoder performance is sensitive to branches training.
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V. SUMMARY AND OUTLOOK

We have presented a framework that relies information-theoretic principles to adversarial networks for

learning anonymized representation of statistical data. Experimental results shown quite explicitly that a

signi�cantly large range of trade-offs can be achieved. Furthermore, the proposed method can be applied

to any type of data provided enough training samples with both regular and private labels are available,

ensuring a certain trade-off between the misclassi�cation probabilities. Extension of this work can be

envisaged in many different ways but in particular, it would be important to contrast the results here to

the unsupervised learning scenarios without any prede�ned regular task.
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APPENDIX

APPENDIX A: PROOF OFLEMMA 1

The upper bound simply follows by using Jensen-Inequality [Cover and Thomas, 2006] while the lower

bound is a consequence of the de�nition of the rate-distortion and distortion-rate functions. The probability

of misclassi�cation corresponding to the classi�er can be expressed in terms of the expected distortion:

PE(QẐ jU ; QUjX ) = EPXZ QU j X [d(Z; U )] ;

based on the �delity measured(z; u) := 1 � QẐ jU (zju). Because of the Markov chainZ �
� X �
� U, we

can use the data processing inequality [Cover and Thomas, 2006] and the de�nition of the rate-distortion

function, obtaining the following bound for the classi�cation error:

I (PZ ; QUjZ ) � min
PÛ j Z : Z!P (U)

EP
ÛZ

[d(Z; Û)] � EP XZ Q U j X
[d(Z;U )]

I
�
PZ ; PÛ jZ

�
(22)

= R Z;Q Ẑ j U

�
PE(QẐ jU ; QUjX )

�
: (23)

For EPXZ QU j X [d(Z; U )], we can use the de�nition ofR � 1
Z;Q Ẑ j U

(�) to obtain from(22), the desired inequality:

R � 1
Z;Q Ẑ j U

(I (PZ ; QUjZ )) � PE(QẐ jU ; QUjZ ): (24)
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