G. Shaw and D. Manolakis, Signal processing for hyperspectral image exploitation, IEEE Signal Processing Magazine, vol.19, issue.1, pp.12-16, 2002.
DOI : 10.1109/79.974715

D. Manolakis, D. Marden, and G. Shaw, Hyperspectral image processing for automatic target detection applications, Lincoln Laboratory Journal, vol.14, issue.1, pp.79-116, 2003.

D. G. Manolakis, R. B. Lockwood, and T. W. Cooley, Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms, 2016.
DOI : 10.1017/CBO9781316017876

D. Manolakis, E. Truslow, M. Pieper, T. Cooley, and M. Brueggeman, Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms, IEEE Signal Processing Magazine, vol.31, issue.1, pp.24-33, 2014.
DOI : 10.1109/MSP.2013.2278915

D. Manolakis, R. Lockwood, T. Cooley, and J. Jacobson, Is there a best hyperspectral detection algorithm, Proc. SPIE 7334, p.733402, 2009.
DOI : 10.1117/12.816917

URL : http://dspace.mit.edu/bitstream/1721.1/52646/1/Manolakis-2009-Is%20there%20a%20best%20hyperspectral%20detection%20algorithm.pdf

D. Manolakis and G. Shaw, Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Magazine, vol.19, issue.1, pp.29-43, 2002.
DOI : 10.1109/79.974724

J. Frontera-pons, F. Pascal, and J. P. Ovarlez, False-alarm regulation for target detection in hyperspectral imaging, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.161-164, 2013.
DOI : 10.1109/CAMSAP.2013.6714032

J. Frontera-pons, M. A. Veganzones, S. Velasco-forero, F. Pascal, J. P. Ovarlez et al., Robust anomaly detection in Hyperspectral Imaging, 2014 IEEE Geoscience and Remote Sensing Symposium, pp.4604-4607, 2014.
DOI : 10.1109/IGARSS.2014.6947518

URL : https://hal.archives-ouvertes.fr/hal-01010418

D. Manolakis, G. Shaw, and N. Keshava, Comparative analysis of hyperspectral adaptive matched filter detectors, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, 2000.
DOI : 10.1117/12.410332

N. M. Nasrabadi, Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery, IEEE Signal Processing Letters, vol.15, pp.317-320, 2008.
DOI : 10.1109/LSP.2008.917805

S. Kraut and L. Scharf, The CFAR adaptive subspace detector is a scale-invariant GLRT, IEEE Transactions on Signal Processing, vol.47, issue.9, pp.2538-2541, 1999.
DOI : 10.1109/78.782198

E. J. Kelly, An Adaptive Detection Algorithm, IEEE Transactions on Aerospace and Electronic Systems, vol.22, issue.2, pp.115-127, 1986.
DOI : 10.1109/TAES.1986.310745

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

A. W. Bitar, J. Ovarlez, and L. Cheong, Sparsity-Based Cholesky Factorization and Its Application to Hyperspectral Anomaly Detection Available: https, IEEE Workshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP-17), Curaçao, Dutch Antilles, 2017.
DOI : 10.1109/camsap.2017.8313124

Y. Chen, A. Wiesel, and A. O. Hero, Robust shrinkage estimation of high-dimensional covariance matrices, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop, pp.189-192, 2010.
DOI : 10.1109/SAM.2010.5606730

F. Pascal and Y. Chitour, Shrinkage covariance matrix estimator applied to STAP detection, 2014 IEEE Workshop on Statistical Signal Processing (SSP), pp.324-327, 2014.
DOI : 10.1109/SSP.2014.6884641

URL : https://hal.archives-ouvertes.fr/hal-01104073

F. Pascal, Y. Chitour, and Y. Quek, Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem, IEEE Transactions on Signal Processing, vol.62, issue.21, pp.5640-5651, 2014.
DOI : 10.1109/TSP.2014.2355779

URL : https://hal.archives-ouvertes.fr/hal-01104004

Y. Chen, N. M. Nasrabadi, and T. D. Tran, Sparse Representation for Target Detection in Hyperspectral Imagery, IEEE Journal of Selected Topics in Signal Processing, vol.5, issue.3, pp.629-640, 2011.
DOI : 10.1109/JSTSP.2011.2113170

Y. Zhang, B. Du, and L. Zhang, A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.3, pp.1346-1354, 2015.
DOI : 10.1109/TGRS.2014.2337883

E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, Journal of the ACM, vol.58, issue.3, pp.1-11, 2011.
DOI : 10.1145/1970392.1970395

J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems 22, pp.2080-2088, 2009.

S. Chen, S. Yang, K. Kalpakis, and C. Chang, Low-rank decomposition-based anomaly detection, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, pp.87-430, 2013.
DOI : 10.1117/12.2015652

Y. Zhang, B. Du, L. Zhang, and S. Wang, A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.3, pp.1376-1389, 2016.
DOI : 10.1109/TGRS.2015.2479299

A. W. Bitar, L. Cheong, and J. Ovarlez, Simultaneous sparsitybased binary hypothesis model for real hyperspectral target detection, IEEE International Conference on Acoustics, Speech, and Signal Processing, p.17, 2017.
DOI : 10.1109/icassp.2017.7953031

URL : https://hal.archives-ouvertes.fr/hal-01692408

Z. Zhou, X. Li, J. Wright, E. J. Candès, and Y. Ma, Stable Principal Component Pursuit, 2010 IEEE International Symposium on Information Theory, 2010.
DOI : 10.1109/ISIT.2010.5513535

URL : http://arxiv.org/pdf/1001.2363.pdf

G. A. Swayze, R. N. Clark, A. F. Goetz, K. E. Livo, G. N. Breit et al., Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy, Economic Geology, vol.109, issue.5, p.1179, 2014.
DOI : 10.2113/econgeo.109.5.1179

G. A. Swayze, R. N. Clark, A. F. Goetz, T. G. Chrien, and N. S. Gorelick, Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm, Journal of Geophysical Research, vol.44, issue.2/3, p.5105, 2003.
DOI : 10.1016/0034-4257(93)90012-M

J. Cai, E. J. Candès, and Z. Shen, A Singular Value Thresholding Algorithm for Matrix Completion, SIAM Journal on Optimization, vol.20, issue.4, pp.1956-1982, 2010.
DOI : 10.1137/080738970

URL : http://arxiv.org/pdf/0810.3286

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends?? in Machine Learning, vol.3, issue.1, pp.1-122, 2011.
DOI : 10.1561/2200000016

A. W. Bitar, L. Cheong, and J. Ovarlez, Sparse and Low-Rank Decomposition for Automatic Target Detection in Hyperspectral Imagery Available: https, 2017.

R. N. Clark, G. A. Swayze, A. J. Gallagher, T. V. King, and W. M. Calvin, The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 micros, U.S. Geological Survey, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00167014

A. Baldridge, S. Hook, C. Grove, and G. Rivera, The ASTER spectral library version 2.0, Remote Sensing of Environment, vol.113, issue.4, pp.711-715, 2009.
DOI : 10.1016/j.rse.2008.11.007