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Abstract

By introducing an appropriate representation of the observation, detection problems may be inter-

preted in terms of estimation. The case of the detection of a deterministic signal in Gaussian noise

is associated with two orthogonal subspaces: the first is the signal subspace which is generally one

dimensional and the second is called a reference noise alone (RNA) space because it contains only

the noise component and no signal.The detection problem can then be solved in the signal subspace,

while the use of the RNA space is reduced to the estimation of the noise in the signal subspace.This

decomposition leads to a very simple interpretation of singular detection, even in the non-Gaussian case,

in terms of perfect estimation. The method is also extended to multiple signal detection problems and

to some special cases of detection of random signals.
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I. INTRODUCTION

Detection and estimation are among the most important topics in the problems of signal processing.

These problems are presented extensively in many textbooks [l], [2], and there are now a great number

of efficient solutions, at least under the classical assumptions such as Gaussian noise. The aim of this

correspondence is to give a new presentation of the classical detection problem by using an appropriate

geometrical interpretation. The idea of a geometrical interpretation has already been used in detection

problems, particularly the projection method in an appropriate reproducing kernel Hilbert space [3]-[5].

In the case of white noise this idea is the basis of the geometrical interpretation of many communications

problems [6], [7]. The method presented here is very different from the previous ones and has many

advantages, the most important being the following.

a) It permits a very simple physical interpretation of the relation between detection and estimation in

the case of deterministic signals.

b) It makes systematic use of the notion of the reference noise alone (RNA) space which appears to

be fundamental in the development of adaptive detection theory [8].

Moreover the problem of singular detection has a very simple interpretation, even in the non-Gaussian

case. This correspondence is mostly concerned with the presentation of the general ideas and their physical

interpretation. For this purpose we restrict the discussion to discrete time signals and a finite-dimensional

observation space. The extension to continuous time signals changes only the mathematical aspects of

the theory; the general results are the same.

II. DETECTION, ESTIMATION, AND REFERENCE NOISIE ALONE

We first briefly recall the classical results concerning the detection of a deterministic signal in Gaussian

noise. The observation is a vector x belonging to an observation space of finite dimension N . To any

orthonormal bases ui of this space we can associate the expansion

x =
N∑
i=1

xiui, (1)

which defines the components xi of the vector x. We suppose that the noise is a zero-mean Gaussian

vector characterized by its covariance matrix

Γ
4
= E[xxT ], (2)

which is assumed to be positive definite. The signal is a deterministic vector s, and in this case the

likelihood ratio is a monotonically varying function of the test function

T (x) = sTΓ−1x. (3)
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This function is linearly dependent on the observation and can be considered as the output of a matched

filter [1, p. 122]. The test function can also be written as

T (x) = σTx, (4)

when

σ = Γ−1s. (5)

In the case of a continuous time observation x(t) and signal s(t) on an interval ∆T the corresponding

expressions are [ 1, p. 118], [2, p. 300-301]

T (x) =

∫
∆T

σ(θ)x(θ)dθ, (6)

where ∫
∆T

Γ(t, θ)σ(θ)dθ = s(t). (7)

The mathematical problems concerning the validity of these expressions have already been extensively

discussed [9].

For the following discussion we decompose the observation space into two orthogonal subspaces. The

first, Hs, is spanned by a unit vector u1, in the signal direction:

u1 = s−1s (8)

where s is the energy of the signal, or

s2 = sT s =
N∑
1

s2
i . (9)

This space is called the signal subspace. The second, H⊥, is orthogonal to Hs, and is called the RNA

space. There is no signal component in this space, and thus the projection of the observation vector x in

this space has exactly the same value under the hypotheses H0 (noise alone) and H1 (signal plus noise).

This space is assumed to have a basis consisting of the orthonormal vectors u2, u2, ..., uN .

If the noise n is white the projections n1 and n2 of n on Hs and H⊥ are independent, and thus the

space H⊥ is irrelevant for the detection of s. That is the basic idea used in the geometric representation

of communication problems [6], [7]. But if n2 is correlated with n1, this correlation must be used in the

detection process, as we now discuss.

The observation is always given by (2.1), but the component x1 has now a particular meaning. Indeed

x1 = uT
1 x = (1/s)sTx. (10)
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and sTx is the output of the matched filter in the case of white noise (WNMF). Clearly we have the

same results in the case of continuous time signals where the vectors ui are time functions ui(t) and N

is in general infinite.

Now let us write all the vectors in terms of the particular bases for Hs and H⊥. The observation vector

x is

xT = [x1
...x2, . . . , xN ] = [x1

...xT
2 ], (11)

where x1 is the first component of x and x2 is the vector of H⊥, with the components x2, x3, . . . , xN .

The signal vector is evidently

sT = [s
...0T ], (12)

and the noise vector

nT = [n1
...nT

2 ]. (13)

(Since the signal subspace is one dimensional there is no difference between the vectors x1, s1, n1 and

the components x1, s1, n1.)

The covariance matrix given by (2) can be partitioned in the form

Γ =


Γ1

... Γ12

. . . . . . . . .

Γ21
... Γ2

 , (14)

where Γij = E[nin
T
j ], with i, j = 1 or 2. Evidently Γ12 = ΓT

21. In order to calculate the test function

(3) we must decompose the matrix Γ−1 with the same partitioning. After elementary calculations we

obtain

Γ =


A

... C

. . . . . . . . .

CT
... B

 , (15)

with

A = [Γ1 − Γ12Γ
−1
2 Γ21]−1, (16)

B = [Γ2 − Γ21Γ
−1
1 Γ12]−1, (17)

C = −AΓ12Γ
−1
2 . (18)

These relations are valid for any symmetric positive matrix Γ (even when Γ1 is not a scalar).
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The matrices A, B, and C are directly connected with linear mean-square (LMS) estimation, and this

point is fundamental for the following. Consider for example the LMS estimation of the vector n1 in

terms of n2 By application of the projection theory it is well-known [10] that the LMS estimate is

n̂1 = Γ12Γ
−1
2 n2. (19)

The variance matrix is the correlation matrix of the error

ñ1 = n1 − n̂1, (20)

and can be written

ε2
4
= E[ñ1ñ

T
1 ] = Γ11 − Γ12Γ

−1
2 Γ21. (21)

By comparing with the previous equations we see that

n̂1 = −A−1Cn2 (22)

and

ε2 = A−1. (23)

Let us now apply these general results to our particular case where n is given by (13), which implies that

n1, and A are scalars. In this case ε2 is the minimum mean-square error in the estimation of the noise

in the signal subspace Hs in terms of the noise in the RNA subspace H⊥. Moreover if we introduce the

quantity

d2 = sTΓ−1s (24)

we obtain

A =
1

ε2
=
d2

s2
. (25)

At this point we recall that the problem of regular or singular detection is completely specified by d2

[ 1, p. 121], [2, p. 99]. Thus this problem is also one of regular or singular estimation. More precisely

singular detection occurs when ε2 = 0, which means physically that the noise in the signal subspace can

be estimated without error, and thus suppressed, only by consideration of the noise in the RNA space.

This point will be discussed more precisely in the following.

As n1 is a scalar we can write (19) as

n̂1 = hTn2 (26)

and from (22) we have

hT = −A−1C = −(s2/d2)C. (27)
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Let us consider the test function given by (4) and (5). The vector σT which is equal to sTΓ−1 can be

calculated from (12) and (15), and we obtain

σT = [As
...Cs] (28)

where As is a scalar. Thus it can also be written as

σT = As[1
...A−1C] = (d2/s)[1

...− hT ]. (29)

We deduce from (4) that the test function is

T (x) = (d2/s)(x1 − hTx2). (30)

But H⊥ is an RNA space, since it is orthogonal to the signal. Thus the component x2 of the observation

is only a noise component n2 and by using (26) we deduce the final and simpler expression for the test

function

T (x) = (d2/s)(x1 − n̂1). (31)

This structure means that the optimal detection of a deterministic signal in Gaussian noise can be

decomposed into two different operations:

1) projection of the observation on the signal subspace: this can be carried out by the WNMF,

2) estimation of the noise component in this signal space in terms from the noise in the RNA space:

this can be done in many ways well-known in the engineering literature.

Thus we see the strong connection between detection and estimation problems, a point which has been

already widely discussed in the case of random signals, but in a completely different way.

III. STRUCTURE AND CHARACTERISTIC PROPERTIES

OF THE OPTIMAL RECEIVER

In this section we will discuss more carefully the consequences of the structure of the test function

given by (31). First we notice that the factor d2/s is irrelevant and can also be associated with the value

of the threshold t with which T (x) is compared in order to make the optimal decision. Thus this decision

can also be made by comparing the test function

T ′(x) = x1 − n̂1 (32)

with a fixed threshold t′. This value clearly depends on the allowable false alarm probability.

Let us now indicate how this test function can be deduced from the observation x. In particular we

clearly see the separation of the matched filtering for white noise and the estimation of the RNA signal
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x2. The advantage of this structure is that in adaptive detection problems, it is possible to adapt the

estimator even in the presence of a signal, because the signal never appears in the RNA channel.

Let us now consider the case where the input noise is white. In this case it is clear than n1 and n2

are uncorrelated, and we have n̂1 = 0. That means that the estimation procedure is useless, and therefore

the receiver is reduced to the WNMF. Thus the estimator channel is only of interest in the case where

the input noise is colored. In order to specify the receiver which computes the test function T ′(x), it is

interesting to calculate the statistical properties of this function. As the noise is Gaussian and the receiver

linear, T ′(x) is a Gaussian random variable under the two hypotheses H0 and H1. In the absence of a

signal obviously we have E[T ′|H0] = 0. Moreover in this case

T ′(x) = n1 − n̂1 = ñ1, (33)

and the variance of T ′(x) is the mean-square error of the estimate of n1. By comparing with (23) and

(25), we can write

Var T ′(x) = ε2 = A−1 = s2/d2. (34)

In the presence of a signal the variance is the same, and the mean value is

E[T ′(x)|H1] = [x1|H1] = s. (35)

Thus the probability densities of T ′(x) under H0 and H1 are two Gaussian curves of the same variance

ε2 and separated by a distance s. So the separation between the curves is due only to the signal while

the estimation modifies their width.

In this representation we see very clearly why the performance of the optimal receiver is improved by

reducing the estimation error for the same signal.

As noticed before, the detection becomes singular if ε2 = 0, i.e., if it possible to estimate the noise in

the signal subspace from the observation without error.

At this point in the discussion it is interesting to investigate the possible extension to the non-Gaussian

case. We decompose the observation vector by the same procedure as in Section II, and the likelihood

ratio can also be written as

L(x) =
p1(x)

p0(x)
=
p(x1 − s,x2)

p(x1,x2)
(36)

because there is no signal component outside the signal subspace. By introducing the a posteriori

probability density p(x1|x2), we obtain

L(x) =
p(x1 − s|x2)

p(x1|x2)
. (37)
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In particular we see from this expression that the a priori distribution of the observation in the RNA

space, x2, does not play any role in the detection problem.

Let us now explore more precisely the problem of singular detection in the-non-Gaussian context. First

we suppose that the linear estimate of n1 in terms of an RNA observation x2 is singular. This means

that

ε2 = E|ñ2
1] = E[(n1 − n̂1)2] = 0, (38)

and so ñ1 is nonrandom. As the test function T ′(x) can be written as

T ′(x) = sδ0i + ñ1 (39)

under the hypothesis Hi, i = 0, 1, we deduce directly that the detection is also singular because the two

hypotheses can be separated from the observation without error.

Conversely suppose that the detection problem is singular for every value of the amplitude s of the

signal. That means that for every s and x2 the probability densities p(x1−x|x2) = p(x1|x2) as functions

of x1 are nonoverlapping. Thus we have

p(x1|x2) = δ[x1 − f(x2)] (40)

where

f(x2) = E[x1|x2] = x̂1 (41)

which is the best mean-square estimate of x1 in terms of x2, in general nonlinear. But (40) shows that

the variance of x̂1, is zero, which means that the estimation problem is singular in the sense that there

is zero mean-square error. This shows directly the connection between singular detection and singular

estimation.

All these results can be easily extended to the case where the signal belongs to a subspace of dimension

higher that one (multiple signals detection) and even in some cases of random signals. These extensions

clearly show the strong connection between detection ad estimation problems in the sense analyzed in

this paper.
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