Max–Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low-Complexity Transceivers - CentraleSupélec Accéder directement au contenu
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2017

Max–Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low-Complexity Transceivers

Résumé

This work focuses on the downlink and uplink of large-scale single-cell multiuser multiple-input multiple-output systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (TIEs). Particularly, we aim at reducing the complexity of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. To this end, we consider the asymptotic regime in which M and K grow large with a given ratio. Tools from random matrix theory (RMT) are then used to compute, in closed form, accurate approximations for the parameters of the optimal precoder and receiver, when imperfect channel state information (modeled by the generic Gauss- Markov formulation form) is available at the BS. The asymptotic analysis allows us to derive the asymptotically optimal linear precoder and receiver that are characterized by a lower complexity (due to the dependence on the large scale components of the channel) and, possibly, by a better resilience to imperfect channel state information. However, the implementation of both is still challenging as it requires fast inversions of large matrices in every coherence period. To overcome this issue, we apply the truncated polynomial expansion (TPE) technique to the precoding and receiving vector of each TIE and make use of RMT to determine the optimal weighting coefficients on a per-TIE basis that asymptotically solve the max-min SINR problem. Numerical results are used to validate the asymptotic analysis in the finite system regime and to show that the proposed TPE transceivers efficiently mimic the optimal ones, while requiring much lower computational complexity.

Dates et versions

hal-01781991 , version 1 (30-04-2018)

Identifiants

Citer

Houssem Sifaou, Abla Kammoun, Luca Sanguinetti, Merouane Debbah, Mohamed-Slim Alouini. Max–Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low-Complexity Transceivers. IEEE Transactions on Signal Processing, 2017, 65 (7), pp.1841 - 1854. ⟨10.1109/TSP.2016.2645518⟩. ⟨hal-01781991⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More