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Abstract—Full dimension multiple-input-multiple-output (FD-
MIMO) is one of the key technologies proposed in the 3rd
Generation Partnership Project (3GPP) for the fifth generation
(5G) communication systems. The reason can be attributed to its
ability to yield significant performance gains through the deploy-
ment of active antenna elements at the base station in the vertical
as well as the conventional horizontal directions, enabling several
elevation beamforming strategies. The resulting improvement in
spectral efficiency largely depends on the orthogonality of the
sub-channels constituting the FD-MIMO system. Accommodating
a large number of antenna elements with sufficient spacing
poses several constraints for practical implementation, making
it imperative to consider compact antenna arrangements that
minimize the overall channel correlation. Two such configurations
considered in this work are the uniform linear array (ULA)
and uniform circular array (UCA) of antenna ports, where
each port is mapped to a group of physical antenna elements
arranged in the vertical direction. The generalized analytical
expression for the spatial correlation function (SCF) for the
UCA is derived, exploiting results on spherical harmonics and
Legendre polynomials. The mutual coupling between antenna
dipoles is accounted for and the resulting SCF is also presented.
The second part of this work compares the spatial correlation
and mutual information (MI) performance of the ULA and UCA
configurations in the 3GPP 3D urban-macro and urban-micro cell
scenarios, utilizing results from Random Matrix Theory (RMT)
on the deterministic equivalent of the MI for the Kronecker
channel model. Simulation results study the performance patterns
of the two arrays as a function of several channel and array
parameters and identify applications and environments suitable
for the deployment of each array.

Index Terms—Full-dimension (FD) multiple-input multiple-
output (MIMO), spatial correlation, antenna arrays, massive
MIMO, mutual information, mutual coupling.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technology
has received tremendous attention in the last decade pri-
marily due to its ability to improve the spectral efficiency
and user experience through the deployment of large-scale
antenna arrays at the base station (BS), which exploit the
multipath richness present in the spatial domain. However,
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large spatial multiplexing gains can only be realized when
the sub-channels constituted by the individual antennas in the
array are uncorrelated. It is, therefore, important to develop a
pragmatic perspective of MIMO communications in realistic
propagation channels, where the presence of spatial correlation
significantly deteriorates the system performance [1]–[3].

In order to be compatible with the existing 3rd Generation
Partnership Project (3GPP) Long Term Evolution (LTE) stan-
dard, most commercial solutions consider the deployment of
fewer than ten horizontally placed antennas at the BS [4]. An
obvious way to achieve high performance in a correlated envi-
ronment is to have a large separation between these antennas.
However, accommodating a large number of antennas with
sufficient spacing in the azimuth plane alone poses several
constraints for practical implementation, given the BS form
factor limitation. As a consequence, it is imperative to consider
compact antenna array topologies that pack the antennas
intelligently in the elevation as well as the traditional azimuth
dimensions so as to minimize the overall channel correlation.

Most of the existing works in this area consider two-
dimensional (2D) cellular layouts and investigate the spatial
correlation in the azimuth plane only [5]–[8], without realizing
that an explicit relationship exists between the correlation
and the angular domain, which consists of both the azimuth
and elevation dimensions. Due to the three-dimensional (3D)
nature of real world transmission channels, beamforming in the
azimuth alone can not fully exploit all the degrees of freedom
offered by the channel. In fact, several possibilities have
opened up in the recent years for the use of the elevation plane
of the antenna radiation pattern for performance optimization
through the deployment of active antenna elements in a 2D or
3D array panel [9]–[11]. This results in full dimension (FD)
MIMO [12], [13], which has been identified as a promising
technology for the next generation cellular systems in the
3GPP Release 12 and 13 workshops [14], [15]. Initial field
trials have demonstrated the potential performance gain of
this technology [10], [16] and standardization activity has
been initiated in the 3GPP to develop 3D channel models
and identify key areas in the existing LTE standards that need
enhancement for the seamless integration of this technology
into the current 4G LTE systems [15], [17].

The absence of elevation dimension is not the only limi-
tation of the existing correlation models. These models have
generally been derived in the literature for particular Angle of
Departure (AoD)/ Angle of Arrival (AoA) distributions such as
the uniform, Gaussian, cosine, Von Mises, Laplacian [5]–[8],
[18]. The authors in [8] derived the correlation expressions
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for the uniform circular array (UCA) and uniform linear
array (ULA) configurations for Gaussian and uniform angular
distributions, considering only azimuth angles and omnidirec-
tional antennas. The proposed analysis relied on numerical
integration methods to compute the correlation coefficients
for the circular array for Gaussian angular distribution. The
authors in [18] developed closed-form expressions for the
spatial correlation for a compact antenna array under Gaussian
AoA distribution assumption, taking into account the effects
of mutual coupling (MC) between the antennas.

There are some works that consider spatial correlation in
3D propagation scenarios [19]–[25]. However, all these works
consider passive omnidirectional antenna elements arranged in
the azimuth plane only and the correlation analysis is done for
only specific forms of underlying angular distributions. The
authors in [23] demonstrated that the signal correlation be-
tween antenna elements of the UCA can be calculated directly
from its spherical-wave coefficients for certain distributions
of the azimuth and elevation AoAs. The authors in [21] used
the spherical harmonic expansion (SHE) of plane waves to
obtain analytical expressions for the spatial correlation for
several angular distributions. The analysis is useful, but makes
some assumptions on the nature of the underlying angular
distributions, which do not accurately represent the attributes
of real-world propagation scenarios.

The channel conditions and the choice of antenna array
topology together determine the extent of performance gains
realizable through the deployment of multiple antennas at the
BS and the mobile station (MS). Most of the current research
focuses on the impact of different channel conditions on the
system performance [24], [25], without studying the impact
of the choice of the antenna array topology. The problem
becomes more acute in massive MIMO systems, where an
even larger number of antenna elements needs to be packed
in a limited space. Given the BS form factor limitation, the
ULA of antenna ports, where each port is mapped to a group of
physical antenna elements arranged in the vertical dimension,
also referred to as the uniform rectangular array of antenna
elements, has been proposed in the current 3GPP standards
for deployment in FD massive MIMO settings [26]. The
UCA of antenna ports can be another candidate antenna array
topology for FD-MIMO implementation, which will allow for
the compact arrangement of antenna elements in the 3D space.

There have not been many comprehensive studies to com-
pare the performance of the ULA and UCA configurations,
which can help in identifying the applications and radio
environments suitable for their deployment. The authors in
[19] studied some compact antenna array topologies by de-
veloping spatial correlation expressions under the uniform
AoA distribution assumption. They analyzed the sensitivity of
these arrays to several channel parameters and compared their
mutual information (MI) performance. The authors in [27]
compared the bit error rate performance of the ULA and UCA
configurations in Rayleigh fading channels for a 2D channel
model and truncated Gaussian azimuth AoA distribution. The
numerical results were obtained for a very small number of
antennas and showed that the UCA outperforms the ULA for
moderate angular spreads and similar array sizes. The authors

in [20] derived spatial correlation expressions under the impact
of MC for the ULA, UCA and uniform rectangular array
configurations for uniform azimuth and elevation angular dis-
tributions. The MI analysis showed that the ULA performance
is very sensitive to MC and spatial parameters.

In our study of FD-MIMO antenna array configurations, we
make two main contributions. In the first part of this paper,
we derive a generalized analytical expression for the spatial
correlation function (SCF) for the UCA of antenna ports in
a 3D cellular layout, where each antenna port is mapped
to a group of physical antenna elements arranged in the
vertical direction. The derivation exploits results on spherical
harmonics and Legendre polynomials. The final expression
depends on the angular parameters and the geometry of the
array through the Fourier Series (FS) coefficients of the power
spectra, and can be used to compute correlation coefficients
for any arbitrary 3D propagation environment. The analysis
follows the guidelines in [28], where the SCF for the ULA
topology was worked out. However, the derivation for the
UCA is more involved owing to the more intricate nature
of the array response vector. The expression for the spatial
correlation taking into account the mutual coupling (MC)
effects between the antenna dipoles is also derived.

The second part of this paper thoroughly compares the
spatial correlation performance of the ULA and UCA configu-
rations. The SCF for the UCA derived here and the SCF for the
ULA presented in [28] are used to determine the theoretical
covariance matrices at the transmitter and the receiver and
form the Kronecker channel model. The MI performance of
the two arrays is then evaluated by utilizing the information-
theoretic deterministic equivalent of the MI developed for
the Kronecker channel model in [29] using results from
Random Matrix Theory (RMT). The performance patterns of
the two arrays are compared in the 3D urban-macro (UMa)
and 3D urban-micro (UMi) scenarios proposed in the 3GPP
and WINNER+ standards [17], [30], as a function of several
channel and array parameters, including mean azimuth and
elevation AoD/AoA, angular spreads, the number of antennas
and antenna spacing. Some useful insights into the impact of
MC on the spatial correlation and MI performance of the
two arrays are also provided. Results show that for equal
array sizes, the ULA outperforms the UCA for high angular
spreads and low number of antennas to array width ratio,
making it a suitable candidate for rich scattering environments.
However, UCA is a more appropriate choice in massive MIMO
settings, where the circular arrangement of antenna ports
will minimize the overall correlation experienced by a large
number of antennas arranged in a confined space. We believe
that the conclusions drawn will assist in the identification of
appropriate deployment scenarios for the two arrays.

The rest of the paper is organized as follows. Section II
describes the UCA configuration and the corresponding 3D
channel model. The analytical expressions for the SCF with
and without accounting for the MC effects are derived in
section III. Section IV compares the spatial correlation and
MI performance of the ULA and the UCA topologies as
a function of several channel and array parameters using
numerical results. Finally, section V concludes the paper.
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Fig. 1: Antenna port structure.

II. ANTENNA ARRAY CONFIGURATION AND 3D CHANNEL
MODEL

The key source of performance enhancement in FD-MIMO
systems is the deployment of active antenna elements in
both the horizontal and vertical directions, wherein adaptive
and dynamic precoding can be performed jointly across all
elements to help realize different 3D beamforming scenarios.
The traditional spatial channel model (SCM) used in theo-
retical researches and wireless communication standards is a
2D channel model which ignores the elevation angles of the
signal paths and is utilized for the evaluation of technologies
designed for BSs equipped with horizontally placed antenna
elements. However, for the evaluation and design of FD-
MIMO, such 2D channel models are not adequate and 3D
SCMs need to be developed. This section introduces the
antenna configuration based on the circular arrangement of
antenna ports and outlines a simplified 3D SCM which is
inspired from the ongoing standardization efforts in the 3GPP,
but is more tractable for the correlation analysis later.

A. Antenna Configuration

To help readers understand the use of elevation beamform-
ing techniques in practice, we will introduce the antenna
configuration and radiation pattern expressions being proposed
in the current standardization works. In LTE, the radio resource
is organized on the basis of antenna ports, also referred to
as transceiver units or columns [15], [26]. Each antenna port
is mapped to NE physical antenna elements arranged along
the vertical direction. The 3D beamforming techniques aim
at realizing spatially separated transmission links to a large
number of MSs. One possible way to do this is to build
antenna ports that transmit narrow vertical beams at different
downtilt angles, where the downtilt angle achieved by a port
is denoted by θtilt. The NE antenna elements constituting a
port are fed with the same signal with corresponding weights
wk(θtilt), k = 1, . . . NE , to focus the transmitted wavefront in
the direction of the targeted MS [10], [17], [31]. The higher
is the value of NE , the narrower is the beam that can be
transmitted from a port. The structure of a typical antenna
port is shown in Fig. 1 [17], [31]. Several such antenna ports
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Fig. 2: UCA of antenna ports.

can be used, where every port can be fed with a different
signal intended for a different user. At the MS, each antenna
port appears as a single antenna, because its elements carry
the same signal. We are therefore interested in the channel
between the transmitting antenna port and the receiver side
instead of the channel between the individual elements.

In this work we focus on the UCA configuration shown
in Fig. 2, where the antenna ports are arranged in a circle
of radius r in the (êx, êy) plane, with the reference point at
the center of the circle. Every port is mapped to NE physical
antenna elements arranged along the êz direction.

In theory, the antenna port pattern depends on the number of
antenna elements constituting the port, their patterns, relative
positions and corresponding weights. Antenna elements are
usually manufactured with a fixed beamwidth, and antenna
manufacturers typically offer a limited number of beamwidth
variations within their conventional product lines. Organizing
these elements into ports provides control over the half power
beamwidth (HPBW) and maximum gain of the overall antenna
port. The values of important antenna element parameters
based on the 3GPP standards are provided in Table 1 [17],
[26]. The subscript ‘E’ is to stress on the fact that these values
are for antenna elements. For the values of NE and inter-
element separation specified in Table 1, the gain and HPBW
of the overall antenna port can be calculated using a simple
relationship in [32]. The parameter values for the antenna port
are provided in Table 2 [33], [34].

To enable an abstraction of the role played by the antenna
elements to perform the downtilt, ITU channel model approx-
imates the vertical radiation pattern of each port by a narrow

TABLE I: Antenna element parameters.

Parameter Value
Carrier Frequency 2GHz

NE , Inter-element separation 10, 0.5 λ
Azimuth HPBW φ3dB,E 65o

Elevation HPBW θ3dB,E 65o

Maximum directional element gain GE,max 8dBi
Side-lobe attenuation SLAv,E 30dB
Maximum attenuation Am,E 30dB.
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beam in the elevation plane with HPBW, θ3dB = 15o. We take
this ‘antenna port approach’ and model the channel between
antenna ports instead of antenna elements. The combined
antenna port radiation pattern is given in dB as follows [33],
[34], [31],

Ap(φ, θ, θtilt) = Gp,max −min{−(AH(φ) +AV (θ, θtilt)), Am},
(1)

where,

AH(φ) = −min

[
12

(
φ

φ3dB

)2

, Am

]
,

AV (θ, θtilt) = −min

[
12

(
θ − θtilt
θ3dB

)2

, Am

]
, (2)

where AH(φ) and AV (θ, θtilt) are the horizontal and vertical
antenna patterns, φ and θ represent the azimuth and the
elevation AoDs respectively and θtilt is the electrical tilt angle.
Am is defined in Table 2. For an antenna port with vertically
polarized antenna elements, the global field pattern along the
horizontal polarization is zero and along the vertical polariza-
tion is given by

√
Ap(φ, θ, θtilt)|lin [[34], Section A.2.1.6.1,

p. 79]. Denoting Ap(φ, θ, θtilt)|lin as 10
Gp,max

10 gt(φ, θ, θtilt),
the field pattern along the vertical polarization in linear scale
can be decomposed as gt(φ, θ, θtilt) ≈ gt,H(φ)gt,V (θ, θtilt),
with the horizontal and vertical field patterns given by,

gt,H(φ) = exp

(
−1.2

(
φ

φ3dB

)2

ln 10

)
, (3)

gt,V (θ, θtilt) = exp

(
−1.2

(
θ − θtilt
θ3dB

)2

ln 10

)
. (4)

B. 3D Channel Model

The SCM used for the evaluation of different standardized
technologies operating with BSs equipped with horizontally
placed antenna elements is a 2D channel model, developed
and refined over the years by a number of research and
standardization efforts in the 3GPP community. This 2D model
ignores the modeling of the elevation angles of the propagation
paths for simplicity, even though the propagation environments
are 3D in nature. However, when evaluating the performance
of FD-MIMO systems, which consider the arrangement of
antenna elements in both the azimuth and elevation planes,
it is important for channel models to account for the elevation
angles of the propagation paths and also capture the directional
antenna radiation pattern in the vertical direction.

Encouraged by the preliminary results on the potential of
elevation beamforming to enhance the system performance,
the 3GPP has recently completed a thorough study on the

TABLE II: Antenna port parameters.

Parameter Value
Carrier Frequency 2GHz

Azimuth HPBW φ3dB 65o

Elevation HPBW θ3dB 15o

Maximum directional port gain Gp,max 17dBi
Maximum attenuation Am 20dB.

3D channel model in [17]. Like its 2D counterparts, this
channel model also follows a system-level approach, wherein
channel realizations are generated by summing contributions
of N propagation paths, also referred to as clusters. Every
cluster is characterized by its time delay, AoD (φn, θn) and
AoA (ϕn, ϑn), where φn and θn correspond to the azimuth
and elevation AoD of the nth cluster respectively, and ϕn
and ϑn correspond to the azimuth and elevation AoA of the
nth cluster respectively. Additionally, the standardized channel
models assume that every cluster gives rise to M unresolvable
subpaths which have the same delay and mean AoD/AoA as
the overall cluster [31]. The clusters are described through
large scale parameters such as the delay spread, shadow fading
and azimuth and elevation angular spreads. These parameters
are drawn from given distributions and serve to generate the
cluster powers, delays and angles, often referred to as small
scale parameters.

The channel model used in this work is inspired from the
3GPP 3D channel model in [17], but makes some realistic
assumptions on the channel parameters to make the model
tractable for the subsequent theoretical analysis in this work.
In particular, the assumption made in the standards that
every cluster gives rise to M unresolvable subpaths has been
dropped. Since these subpaths are assumed to be unresolvable
in the standards and are centered around the AoD/AoA of the
original cluster, so their spatial properties are quite similar
and are well-captured by the spatial parameters defined for
the overall cluster. The channel realizations are therefore
generated by summing the contributions of N clusters. Based
on this discussion, the narrowband 3D channel between the
BS antenna port s and the MS antenna port u is given by
[17], [31],

[H]su =
√

10−(PL+σSF−Gp,max)/10

N∑
n=1

αn
√
gt(φn, θn, θtilt)

×
√
gr(ϕn, ϑn)[ar(ϕn, ϑn)]u[at(φn, θn)]s, (5)

where PL and σSF are used to denote the loss incurred
by path loss and shadow fading respectively in dB, and
αn ∼ CN (0, 1

N ) is the complex amplitude of the nth clus-
ter. For vertically polarized elements,

√
gt(φn, θn, θtilt) and√

gr(ϕn, ϑn) are the global field patterns of the BS antenna
port and MS antenna port respectively. Also, at(φ, θ) and
ar(ϕ, ϑ) are the array response vectors of the antennas at the
BS and the MS respectively with entries given by,

[at(φ, θ)]s = exp(ikt.xs), (6)
[ar(ϕ, ϑ)]u = exp(ikr.xu), (7)

where . is the scalar product, i is the imaginary unit, xs is the
location vector of the sth transmit (Tx) antenna port, xu is the
location vector of the uth receive (Rx) antenna port, and kt
and kr are the Tx and Rx wave vectors respectively, where
k = kv̂, with k = 2π

λ . Note that λ is the wavelength of the
carrier and v̂ represents the unit vector in direction of wave
propagation.

Given the UCA configuration of radius r in Fig. 2 with
NBS Tx antenna ports and NMS Rx antenna ports, [v̂t.xs] =
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r cos(φ − ψs) sin θ, where ψs = 2π(s−1)
NBS

, s = 1, . . . , NBS ,
and [v̂r.xu] = r cos(ϕ − υu) sinϑ, where υu = 2π(u−1)

NMS
, u =

1, . . . , NMS . The 3D channel between the sth Tx antenna port
and the uth Rx antenna port in (5) can therefore be written
as,

[H]su =
√

10−(PL+σSF−Gp,max)/10

N∑
n=1

αn
√
gt(φn, θn, θtilt)

×
√
gr(ϕn, ϑn) exp (ikr cos(φn − ψs) sin θn) exp(ikr (8)

× cos(ϕn − υu) sinϑn), s = 1, . . . , NBS , u = 1, . . . , NMS .

III. SPATIAL CORRELATION FUNCTION FOR A UNIFORM
CIRCULAR ARRAY

Compact structure of large-scale antenna arrays and low
values of elevation angular spread in realistic propagation
environments drastically increase the spatial correlation in FD-
MIMO systems. It is therefore imperative to characterize and
take this correlation into account to allow for an accurate per-
formance evaluation of FD-MIMO techniques. In this section,
we derive a generalized analytical expression for the SCF for
the 3D MIMO channel constituted by the UCAs of antenna
ports at the BS and the MS. The final expression will be
shown to depend on the FS coefficients of the power azimuth
spectrum (PAS) and the power elevation spectrum (PES) of
the propagation scenario under investigation. We will first
elaborate on the concepts of PAS and PES, before proceeding
to the derivation of the SCF.

A. Power Spectra

Power azimuth and elevation spectra are important statistical
properties of wireless channels, that influence the spatial
correlation present in MIMO systems [35]. PAS describes the
spatial distribution of the expected power in the azimuth di-
mension, while PES describes the distribution in the elevation.
They are expressed using the 3D antenna radiation pattern
and the azimuth and elevation angular power density func-
tions of the radio waves. For the spherical coordinate system
(êr, êθ, êφ) shown in Fig. 2, the joint angular power density
function p(φ, θ) is related to the joint angular probability
distribution function f(φ, θ) by [36],

p(φ, θ) =
f(φ, θ)

sin(θ)
. (9)

Obtaining the marginal probability distribution for θ yields
the relationship between the elevation power density function
pθ(θ), and the elevation probability distribution function fθ(θ)
as,

pθ(θ) =
fθ(θ)

sin(θ)
. (10)

Observing that the integral of the product of the Tx antenna
port radiation pattern and the angular power density function
gives the expected power transmitted by an antenna port, we
define the PAS and the PES at the transmitter respectively as,

PASt(φ) = gt,H(φ)pφ(φ), (11)

where pφ(φ) is the azimuth power density function which
equals the azimuth probability density function fφ(φ) and,

PESt(θ, θtilt) = gt,V (θ, θtilt)pθ(θ). (12)

The expressions for PASr and PESr can be obtained similarly.

B. Analytical Expression for the SCF

The analysis in this section will leverage the mathematical
convenience of the SHE of plane waves and the properties
of Legendre and associated Legendre polynomials, provided
in Appendix A. It can be seen from (8) that for αn ∼ i.i.d
CN (0, 1

N ), the SCF for the channels constituted by any pair
of Tx antenna ports and Rx antenna ports can be expressed
as,

SCFuca = E[[H]su[HH
s′u′ ]]

= 10−(PL+σSF−Gp,max)/10ρt(s, s
′)ρr(u, u

′), (13)

where,

ρt(s, s
′) = E

[
gt(φ, θ, θtilt) exp

(
i
2π

λ
r sin θ(cos(φ− ψs)

− cos(φ− ψs′))
)]
, (14)

ρr(u, u
′) = E

[
gr(ϕ, ϑ) exp

(
i
2π

λ
r sinϑ(cos(ϕ− υu)

− cos(ϕ− υu′))
)]
, (15)

where ψs = 2π(s−1)
NBS

, ψs′ = 2π(s′−1)
NBS

and υu = 2π(u−1)
NMS

, υu′ =
2π(u′−1)
NMS

, where s, s′ = 1, . . . , NBS and u, u′ = 1, . . . , NMS .
To facilitate the derivation, the expressions in (14) and (15)

will be reformulated to give them a form similar to that of
a plane electromagnetic wave, which can be expanded using
the SHE result provided in Appendix A. The necessary steps
are shown for (14). A closed-form expression for (15) can be
obtained similarly.

Defining Z1 = cosψs − cosψs′ and Z2 = sinψs − sinψs′ ,
ρt(s, s

′) can be written as,

ρt(s, s
′) = E

[
gt(φ, θ, θtilt) exp

(
i
2π

λ
r sin θ(Z1 cosφ

+ Z2 sinφ)
)]
. (16)

Next we define c =
√
Z2
1 + Z2

2 and

ζ =


0, if Z1 = 0 & Z2 = 0,

arctan
(
Z2

Z1

)
, if Z1 ≥ 0 & Z2 > 0,

π + arctan
(
Z2

Z1

)
, if Z1 < 0 & Z2 ≥ 0.

(17)

With these definitions, (16) can be reformulated as,

ρt(s, s
′) = E

[
gt(φ, θ, θtilt) exp

(
i
2π

λ
rc sin θ cos(φ− ζ)

)]
,

(18)

for (Z1 = 0 & Z2 = 0), (Z1 ≥ 0 & Z2 > 0) and (Z1 <
0 & Z2 ≥ 0). Note that the other terms can be calculated
as ρt(s, s′) for (Z1 ≤ 0 & Z2 < 0) = ρt(s, s

′)∗ for (Z1 ≥
0 &Z2 > 0) and ρt(s, s′) for (Z1 > 0 &Z2 ≤ 0) = ρt(s, s

′)∗

for (Z1 < 0 & Z2 ≥ 0).
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ρt(s, s
′) = E[gt(φ, θ, θtilt)]j0

(
2π

λ
rc

)
+

∞∑
n=1

(−1)n(4n+ 1)j2n

(
2π

λ
rc

)
P2n(0)E[P2n(cos θ)gt,V (θ, θtilt)]E[gt,H(φ)] +

∞∑
n=1

4(−1)n

× j2n
(

2π

λ
rc

)( n∑
m=1

P̄ 2m
2n (0)E[P̄ 2m

2n (cos θ)gt,V (θ, θtilt)]
(

cos(2mζ)E[cos(2mφ)gt,H(φ)] + sin(2mζ)E[sin(2mφ)gt,H(φ)]
))

−
∞∑
n=1

4i(−1)nj2n−1

(
2π

λ
rc

)( n∑
m=1

P̄ 2m−1
2n−1 (0)E[P̄ 2m−1

2n−1 (cos θ)gt,V (θ, θtilt)]
(

cos((2m− 1)ζ)E[cos((2m− 1)φ)gt,H(φ)]

+ sin((2m− 1)ζ)E[sin((2m− 1)φ)gt,H(φ)]
))
, (21)

The SHE result for plane electromagnetic waves given in
equation (40) in Appendix A is now exploited to yield an
alternate expression for the exponential term in (18) as,

exp

(
i
2π

λ
rc sin θ cos(φ− ζ)

)
=

∞∑
n=0

in(2n+ 1)jn

(
2π

λ
rc

)
× Pn(sin θ cos(φ− ζ)). (19)

Note that sin θ cos(φ − ζ) is the dot product of the unit
wave vector v̂ with spherical coordinates (φ, θ), and x̂, the unit
vector between the positions of sth and s′th Tx antenna ports,
with spherical coordinates (ζ, π2 ). Combining the addition
theorem for Legendre polynomials given in Appendix A (41)
with (19), and using the resulting expression in (18) would
expand ρt(s, s′) as,

ρt(s, s
′) = E

[
gt(φ, θ, θtilt)

∞∑
n=0

in(2n+ 1)jn

(
2π

λ
rc

)
×
(
Pn(cos θ)Pn(0) + 2

n∑
m=1

(n−m)!

(n+m)!
Pmn (cos θ)

× Pmn (0) cos (m(φ− ζ))
)]
. (20)

The properties of Legendre and associated Legendre polyno-
mials provided in Appendix A along with some trigonomet-
ric manipulations are now exploited to obtain the following
Lemma.

Lemma 1. For a uniform circular array of antenna ports
with arbitrary antenna patterns and for arbitrary angular
distributions, where φ ∈ [−π, π] and θ ∈ [0, π], the
correlation between the channels constituted by any pair
of Tx antennas ports can be expressed as (21), where
P̄mn (x)=

√
(n+ 1

2 ) (n−m)!
(n+m)!P

m
n (x) and s, s′ = 1, . . . , NBS .

The expansion in (21) reveals several problems in deriving
an analytical expression for the SCF. The random variables
pertaining to the azimuth and elevation angles appear as
arguments of Legendre polynomials, posing a challenge to
the computation of the expectation terms in a closed-form.
However, the use of the trigonometric expansions of Legendre
and associated Legendre polynomials provided in Appendix A
can produce an interesting analytical expression for ρt(s, s′).
These expansions will help express the expectation terms in
(21) as a linear combination of the scaled FS coefficients of
the PAS and PES. After expanding the expectation terms in
(21) using (43) from Appendix A, the generalized analytical

expression for the SCF for channels constituted by the (BS,
MS) antenna port pairs (s, u) and (s′, u′) can be obtained and
is presented in Theorem 1 .

Theorem 1. For a UCA of antennas ports with arbitrary
antenna patterns and for arbitrary angular distributions, where
φ ∈ [−π, π] and θ ∈ [0, π], the SCF for the FD channels
constituted by the (BS, MS) antenna port pairs (s, u) and
(s′, u′) is given by,

SCFuca = 10−(PL+σSF−Gp,max)/10ρt(s, s
′)ρr(u, u

′), (22)

where ρt(s, s′) and ρr(u, u′) are given by equations (23) and
(24) respectively, for (Z1 = 0 & Z2 = 0), (Z1 ≥ 0 & Z2 >
0) and (Z1 < 0 & Z2 ≥ 0), s, s′ = 1, . . . , NBS , u, u′ =
1, . . . , NMS , where aφ(m), bφ(m), aθ(k) and bθ(k) are the
FS coefficients of the power spectra defined as,

aφ(m) =
1

π

∫ π

−π
PASt(φ) cos(mφ)dφ, (25)

bφ(m) =
1

π

∫ π

−π
PASt(φ) sin(mφ)dφ, (26)

aθ(k) =
1

π

∫ 2π

0

PESt(θ, θtilt) cos(kθ)dθ, (27)

bθ(k) =
1

π

∫ 2π

0

PESt(θ, θtilt) sin(kθ)dθ. (28)

Note that the other terms can be calculated as ρt(s, s′) for
(Z1 ≤ 0 & Z2 < 0) = ρt(s, s

′)∗ for (Z1 ≥ 0 & Z2 > 0)
and ρt(s, s

′) for (Z1 > 0 & Z2 ≤ 0) = ρt(s, s
′)∗ for (Z1 <

0 & Z2 ≥ 0).
The proof of Theorem 1 is provided in Appendix B. The

theorem enables the computation of the correlation values for
the 3D MIMO channel constituted by the UCAs of antenna
ports at the BS and the MS for arbitrary choices of antenna
patterns and angular distributions. It is possible to truncate
the summations over n in Theorem 1 to a small number, N0,
resulting in a bound on the truncation error that decreases
exponentially with N0 [37]. Using the analysis provided in
Remark 1 in [28], 18 terms are sufficient to bound the
error in the correlation between adjacent antenna ports by
approximately 0.5% for a UCA of 8 ports arranged in a radius
of 2λ. The industrials and theoretical researchers interested
in using this SCF need to provide only the Fourier Series
(FS) coefficients of the power azimuth spectrum (PAS) and the
power elevation spectrum (PES) for the propagation scenario
under study.
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ρt(s, s
′) = π2aφ(0)bθ(1)j0

(
2π

λ
rc

)
+

∞∑
n=1

(−1)n(4n+ 1)j2n

(
2π

λ
rc

)
P2n(0)aφ(0)π2

n∑
k=−n

pn−kpn+k

× 1

2
[bθ(2k + 1)− bθ(2k − 1)] +

∞∑
n=1

4(−1)nj2n

(
2π

λ
rc

)( n∑
m=1

P̄ 2m
2n (0)π2

n∑
k=0

c2m2n,2k
1

2
[bθ(2k + 1)

− bθ(2k − 1)] (cos(2mζ)aφ(2m) + sin(2mζ)bφ(2m))
)
−
∞∑
n=1

4i(−1)nj2n−1

(
2π

λ
rc

)( n∑
m=1

P̄ 2m−1
2n−1 (0)π2

× (cos((2m− 1)ζ)aφ(2m− 1) + sin((2m− 1)ζ)bφ(2m− 1))

n∑
k=1

d2m−12n−1,2k−1
1

2
[aθ(2k − 2)− aθ(2k)]

)
, (23)

ρr(u, u
′) = π2aϕ(0)bϑ(1)j0

(
2π

λ
rc

)
+

∞∑
n=1

(−1)n(4n+ 1)j2n

(
2π

λ
rc

)
P2n(0)aϕ(0)π2

n∑
k=−n

pn−kpn+k

× 1

2
[bϑ(2k + 1)− bϑ(2k − 1)] +

∞∑
n=1

4(−1)nj2n

(
2π

λ
rc

)( n∑
m=1

P̄ 2m
2n (0)π2

n∑
k=0

c2m2n,2k
1

2
[bϑ(2k + 1)

− bϑ(2k − 1)] (cos(2mζ)aϕ(2m) + sin(2mζ)bϕ(2m))
)
−
∞∑
n=1

4i(−1)nj2n−1

(
2π

λ
rc

)( n∑
m=1

P̄ 2m−1
2n−1 (0)π2

× (cos((2m− 1)ζ)aϕ(2m− 1) + sin((2m− 1)ζ)bϕ(2m− 1))

n∑
k=1

d2m−12n−1,2k−1
1

2
[aϑ(2k − 2)− aϑ(2k)]

)
, (24)

C. Spatial Correlation with Mutual Coupling

A radio wave, when incident on an antenna element, induces
an electric current in it. When several antenna elements are
placed close to each other, the electromagnetic field generated
by this induced current in one element alters the current
distribution of the other elements causing mutual coupling
(MC) between them. As a result, the gain, radiation pattern,
and input impedance of each element is affected. Several
works [18], [20], [38]–[40] have shown that this MC effect
is non-negligible due to the spatial constraints at the BS and
the miniaturization trend in mobile terminals.

Generally, it is assumed that MC is detrimental to the system
performance in that it will increase the channel correlation
and deteriorate the system capacity [41]. Recent investigations
have come up with this interesting revelation that MC can in
fact have a decorrelating effect on the channel coefficients.
This favorable result is explained by the fact that MC causes
pattern distortion and provides some form of pattern diversity
[21], [40]. Under small antenna spacing, as is the case in
compact antenna arrays, this pattern diversity effect dominates
over the effect of the loss in spatial diversity resulting in
lower correlation and higher capacity values [18], [20], [38].
However, these works have neglected the impact of the loss
in the antenna gain and transmitted power that is incurred
when MC is taken into account. This loss has been observed
in [39], [40]. In this section, we will derive expressions for
the spatial correlation under the effects of MC and use them
in the subsequent sections to study the impact of MC on the
channel correlation and MI.

The derivation of the SCF under MC effects will ex-
ploit results on the mutual impedance between antenna
dipoles/elements, which have been developed in antenna the-

ory [32]. Since the grouping of these dipoles into ports is a
rather new concept, so the mutual impedance expressions for
antenna ports have not yet been developed. Consequently, in
this section we will focus on NBS antenna elements arranged
in the UCA topology, instead of NBS antenna ports.

To calculate the spatial correlation coefficients between
the Tx antennas elements subject to MC, it is important to
establish the relationship between the channels constituted by
these elements with and without taking into account the MC
effects. This relationship is given by [6], [18],

v = Z−1s, (29)

where Z is the mutual impedance matrix given by,

Z =


1 + Z11

ZL

Z12

ZL
. . .

Z1NBS

ZL

Z21

ZL
1 + Z22

ZL
. . .

Z2NBS

ZL

...
...

. . .
...

ZNBS1

ZL

ZNBS2

ZL
. . . 1 +

ZNBSNBS

ZL

 , (30)

where Zss′ is the self impedance of the antenna dipole if s =
s′ and the mutual impedance between the sth and s′th antenna
dipoles if s 6= s′ with entries given by [32],

Zss′ =


30(0.577 + ln(2π)− Ci(2π) + iSi(2π)), s = s′,

30[2Ci(kdss′)− Ci(kµss′,1)− Ci(kµss′,2)]− 30i

×[2Si(kdss′)− Si(kµss′,1)− Si(kµss′,2)], s 6= s′,

where k = 2π
λ , µss′,1 =

√
d2ss′ + l2 + l and µss′,2 =√

d2ss′ + l2 − l, l is the dipole length, dss′ is the distance
between elements s and s′ and Ci(x) and Si(x) are the
integral cosine and sine functions respectively. Note that the
self-impedance expression is given for the typical dipole length



8

value of λ/2. For the UCA topology, the vector of channel
responses at the Tx side without accounting for the MC effects
is given by,

s =


√
gt(φ, θ, θtilt) exp (ikr cos(φ− ψ1) sin θ)√
gt(φ, θ, θtilt) exp (ikr cos(φ− ψ2) sin θ)

...√
gt(φ, θ, θtilt) exp (ikr cos(φ− ψNBS

) sin θ)

 (31)

where ψs = 2π(s−1)
NBS

. With this formulation, the normalized
correlation coefficient in the presence of MC between the Tx
antenna dipoles s and s′ is given by,

ρMC
t (s, s′) =

1√
PsPs′

E[vsv∗s′ ] (32)

Writing Z−1 as C, and letting css′ denote the elements of C,
E[vsv∗s′ ] can be computed as,

E[vsv∗s′ ] =

NBS∑
m=1

NBS∑
n=1

csmc
∗
s′nE[gt(φ, θ, θtilt) exp(ikr

× cos(φ− ψm) sin θ) exp (−ikr cos(φ− ψn) sin θ)],

=

NBS∑
m=1

NBS∑
n=1

csmc
∗
s′nρt(m,n), s, s′ = 1, . . . , NBS ,

(33)

where ρt(m,n) is given by (23). The mean transmitted power
Ps, s = 1, . . . , NBS is defined and calculated as,

Ps = E[|vs|2] (34)

= <[

NBS∑
m=1

NBS∑
n=1

csmc
∗
snρt(m,n)] +

NBS∑
m=1

|csm|2ρt(m,m),

=

NBS∑
m=1

NBS∑
n=1

m6=n

<[csmc
∗
sn]<[ρt(m,n)] +

NBS∑
m=1

NBS∑
n=1

m 6=n

=[csmc
∗
sn]

×=[ρt(m,n)] +

NBS∑
m=1

<[csmc
∗
sm]ρt(m,m). (35)

Since this derivation is for antenna dipoles, so when using
(23) in (33) and (35) the antenna element radiation patterns
expressions have to be used, which are the same as (3) and
(4), with θ3dB replaced with θ3dB,E = 65o [31].

IV. PERFORMANCE EVALUATION OF THE ULA AND UCA
CONFIGURATIONS

As discussed earlier, accommodating a large number of
antennas with sufficient spacing introduces several constraints
for practical implementation, given the limited space at the
BS and the MS. The problem becomes more acute in massive
MIMO settings, where an even larger number of antenna
elements needs to be packed in a confined space at the top ot
the BS tower. With the advent of FD beamforming techniques
that exploit the properties of the elevation domain, the idea
of placing the antenna elements in the vertical direction and
organizing them into columns or ports is becoming popular
and it is interesting to study and compare different configura-
tions for the resulting antenna ports. In this section, we will

compare the performance of the ULA and UCA configurations
of antenna ports.

The structure of the UCA was explained in section II-A.
The ULA of antenna ports is a popular array configuration pro-
posed in the 3GPP reports on FD-MIMO [17], [26], wherein
the antenna elements are arranged in a rectangular array in the
(êy, êz) plane. The antenna ports are placed at fixed positions
along the êy direction and are numbered in order from 1 to
NBS . Each antenna port is mapped to NE antenna elements
arranged along the êz direction. The topology is shown in Fig.
3. At the receiver side, each antenna port appears as a single
antenna, because its elements carry the same signal. We are
therefore interested in the channel between the transmitting
antenna port and the MS. The SCF for the 3D MIMO channel
constituted by the uniform linear array of antenna ports was
derived in [28]. This section aims at providing a detailed
performance comparison of the two configurations in terms
of spatial correlation and MI, under the constraint of equal
array widths.

A. Simulation Method and Parameters

The channel parameters in (8) are generated and simulation
results are carried out for the 3D urban macro (UMa) and
3D urban micro (UMi) scenarios outlined in the 3GPP and
WINNER+ reports [17], [30]. We will consider a point-to-
point MIMO system with an outdoor user of height 1.5m
positioned at the edge of a cell of radius 250m. The path
loss expressions for the non line of sight (NloS) propagation
condition of the 3D-UMa and 3D-UMi scenarios are provided
in Table 7.2-1 of [17]. The distribution of shadow fading is
log-normal, and its standard deviation is also provided in the
same table. The BS heights for the 3D-UMa and 3D-UMi
scenarios are 25m and 10m respectively. The values of the
mean elevation AoD or the line of sight (LoS) angle for the
user, denoted by θ0, are computed for the two scenarios for
the given BS and MS heights and are provided in Table 3. The
downtilt angle, θtilt, is set equal to the elevation LoS angle of
the user.

The elevation AoDs/AoAs are generated using the Laplacian
elevation angular distribution with parameters θ0 and σ, where
θ0 is the mean elevation angle and σ is the angular spread in
the elevation. The elevation angular spread at the MS, σr,
is computed using the distribution and parameters specified
in Table 7.3-6 of [17] and Table 4-3 of [30]. According to
these tables, σr is log-normally distributed with mean µZSA
and spread εZSA and its mean value is computed to be
101.26 = 18o for the 3D-UMa NLoS and 100.88 = 8o for
the 3D-UMi NLoS scenario. The average values for elevation
angular spread at the BS, σt, for the two scenarios are picked
from the WINNER+ calibration results ([30] Table 4-3 p78).
All these values are tabulated in Table 3. Some field trials
have provided higher values for σt for the 3D-UMi scenario,
however we carry out the simulations for the calibration results
provided in the WINNER+ report [42].

The Von Mises (VM) distribution, with parameters mean
azimuth angle µ and azimuth angular spread κ, is used to
generate azimuth angles due to its close association with
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Fig. 3: ULA of antenna ports.

the Wrapped Gaussian (WG) distribution proposed in the
standards for the generation of azimuth angles. The values
of the azimuth angular spread at the BS and the MS for the
WG density, denoted by σ2

WG,t and σ2
WG,r respectively, are

also computed using the parameters specified in Table 7.3-6
of [17]. The values of the corresponding κt and κr, for the BS
and the MS respectively, are obtained using the relationship
given in [28] and are provided in Table 3. The comparison for
both configurations is done under the same channel conditions
with the values of parameters set as tabulated in Table 3, unless
stated otherwise in the analysis.

Since the spatial constraints at the BS tower largely de-
termine the choice of the antenna array and the separation
between the adjacent ports, so we define the size of the array
as its width and keep it equal for both configurations to allow
for a fair comparison in terms of the total array size. For the
ULA, the normalized width is defined as (NBS − 1)× dt

λ and
for the UCA, it is defined as 2 rλ .

B. Performance in terms of the Spatial Correlation

In this section, we aim to provide a detailed comparison
of the spatial correlation experienced by the antenna ports
in the UCA and ULA configurations. The spatial correlation
coefficients for the Tx and Rx antenna ports for the UCA
topology are given in equations (23) and (24) respectively. The
expressions for the spatial correlation between the Tx antenna
ports and the Rx antenna ports for the ULA configuration were
derived in [[28], equations (27) and (28)].

We first validate the result in Theorem 1 for different
pairs of Tx antenna ports for the UCA configuration, by

TABLE III: Simulation parameters for 3D scenarios.

UMa NLoS UMi NLoS
Parameter Value Parameter Value
NBS , NMS 8 NBS , NMS 8
θ0, θtilt 95.37o θ0, θtilt 91.95o

σ2
WG,t, σ2

WG,r 26o, 74o σ2
WG,t, σ2

WG,r 26o, 69o

κt, κr 6, 2.85 κt, κr 6, 3
σt, σr 8o, 18o σt, σr 4o, 8o
σSF 6 dB σSF 4 dB.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r/λ

|ρ
t|

 

 

Monte−Carlo, Ports (1,4)
Theoretical, Ports (1,4)
Monte−Carlo, Ports (1,7)
Theoretical, Ports (1,7)
Monte−Carlo, Ports (3,4)
Theoretical, Ports (3,4)
Monte−Carlo, Ports (3,7)
Theoretical, Ports (3,7)
Monte−Carlo,  Ports (1,5)
Theoretical,  Ports (1,5)

Fig. 4: Correlation between different pairs of Tx antenna ports in the
UCA for µ = 0 for the UMa scenario. The dotted lines correspond
to κt = 30.

computing the correlation coefficients using the theoretical
result in (23) for N0 = 18 summations over n and the Monte-
Carlo simulations of (14) over 100000 channel realizations.
The correlation values are plotted for the 3D-UMa scenario in
Fig. 4 for the antenna port pairs (1, 4), (1, 7), (3, 4), (3, 7) and
(1, 5). As expected, the correlation decreases with the increase
in the array width and the theoretical result in (23) provides
a very good match to the Monte-Carlo simulated correlation
using less than twenty summations over n. The correlation
values are governed by the interplay between the relative
positions of the ports and the values of channel parameters
like the mean AoD/AoA and the angular spread. The following
discussions and results are organized to study the performance
of the two arrays under different parameter sets.

1) Effect of the azimuth spread κt and the relative positions
of ports in the UCA at µ = 0: For the UCA topology
of 8 antenna ports shown in Fig. 2, it is obvious that the
correlation values between port 3 and port 4 are the highest
among the simulated cases as confirmed in Fig. 4 for the 3D-
UMa scenario, due to their adjacent placement and smallest
inter-port separation. However, the relative separation between
the ports in the pair (1, 7) is also smaller than that between
the pair (1, 4), but the correlation values for (1, 7) are lower.
This is explained by observing that for the mean azimuth AoD
µ = 0, the mean radiation is in êx direction and the spread is
measured along êy direction. The distance along êy is shorter
for the port pair (1, 4), yielding higher values of correlation
for this pair as compared to the values for (1, 7).

Comparing the results for pairs (1, 5) and (3, 7), where the
first pair essentially corresponds to two antenna ports placed
along the êy direction and the second pair corresponds to two
antenna ports placed along the êx direction, we observe that
the values for (1, 5) are much higher than the values for (3, 7).
This is again explained by the fact that for µ = 0, ports 1
and 5 are directly behind each other and in line with the mean
AoD, resulting in maximum correlation. Therefore the relative
separation of the ports along both êx and êy directions together
with the mean AoD determines the correlation values.

Increasing κt will cause the correlation values for all pairs
to increase due to a decrease in the azimuthal spread. This
can be seen by observing the dotted lines in Fig. 4, plotted
for κt = 30. It is important to note that for κt = 30, the port
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Fig. 5: Correlation between different pairs of Tx antenna ports in
the UCA for µ = π/2. Solid lines correspond to UMa scenario and
dotted lines correspond to UMi scenario.

pair (1, 5) experiences higher correlation than (3, 4). Since
there is non-zero separation between ports 3 and 4 along the
direction of measurement of the azimuthal spread, êy , so for
small values of spread this port pair will experience lesser
correlation than the pair (1, 5) that has zero separation along
êy . Even for higher spreads as in the UMa scenario (κt = 6),
the gap between the curves for the port pairs (1, 5) and (3, 4)
becomes smaller as r increases, because the separation along
the êy direction for the port pair (3, 4) starts to increase.

2) Effect of the elevation angular spread σt and relative
positions of the ports in the UCA at µ = π/2: The correlation
values for the Tx antenna port pairs are now plotted for both
3D-UMa (solid lines) and 3D-UMi (dotted lines) scenarios in
Fig. 5 for µ = π/2. Changing the value of µ to π/2 yields a
different order of results. The correlation in the pair (1, 7) is
now higher than that in the pair (1, 4) because of the shorter
relative distance along the direction of the azimuthal spread,
which is now measured along the êx direction. Also the pair
(3, 7) has the highest correlation because for µ = π/2, port 7 is
directly behind port 3 and in line with the mean AoD leading
to high correlation values. The arrangement of the ports in
the (êx, êy) plane in a circular fashion, allows µ to impact the
order of results. Changes in the mean elevation AoD will only
affect the values but not the order of results.

The correlation values for the 3D-UMi scenario are higher
for all port pairs. This is because of the lower value of
elevation angular spread, σt proposed for the UMi scenario
in the WINNER+ report. Note that κt for both scenarios is
the same as tabulated in Table 3. It is interesting to note that
although the lower value of σt in the 3D-UMi scenario does
have the adverse effect of increasing correlation values but it
also increases the average Tx power of an antenna port (see
the value of |ρt| at 0 antenna spacing). This is a consequence
of the form of the incorporated vertical antenna pattern in (4).

We now compare the spatial correlation performance of the
UCA and the ULA configurations.

3) Effect of the relative positions of ports on the correlation
values for the ULA and UCA topologies at µ = 0: The
correlation between adjacent Tx antenna ports (i.e. port 1 and
port 2) of the UCA configuration is plotted in red in Fig.
6 for the 3D-UMa scenario. We also plot in green on the
same figure, the correlation between the adjacent Tx antenna

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalized width of the antenna array

|ρ
t|

 

 

Theoretical correlation, UCA (1,2)
Monte−Carlo correlation, UCA (1,2)
Theoretical correlation, ULA (1,2)
Monte−Carlo correlation, ULA (1,2)
Theoretical correlation, UCA (1,4)
Monte−Carlo correlation, UCA (1,4)
Theoretical correlation, ULA (1,4)
Monte−Carlo correlation, ULA (1,4)
Theoretical correlation, UCA (1,7)
Monte−Carlo correlation, UCA (1,7)
Theoretical correlation, ULA (1,7)
Monte−Carlo correlation, ULA (1,7)

Fig. 6: Comparison of correlation between different Tx antenna port
pairs in the UCA and ULA configurations for the 3D-UMa scenario.
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Fig. 7: Comparison of correlation between different Tx antenna port
pairs in the UCA and ULA configurations for the 3D-UMa scenario
(solid lines) and the 3D-UMi scenario (dotted lines).

ports (1 and 2) of the ULA configuration. For every value of
normalized array width, the correlation between the adjacent
antenna ports in the ULA is higher than that experienced by
the adjacent ports in the UCA. This is explained by realizing
the minimum distance advantage of the UCA topology.

The result for adjacent antenna ports does not hold for all
other pairs of ports. The structure of the circular array is
different from that of the linear array since the antennas are
distributed in the (êx, êy) plane in a circular fashion, rather
than being placed linearly along one axis. For the ULA, the
correlation between port 1 and all subsequent antenna ports
will be lower than the correlation between the ports 1 and
2 as shown in Fig. 6. This not true for the UCA, where the
values will be greatly influenced by the positions of the ports
and the channel parameters as shown in Fig. 4 and Fig. 5.
For a fixed width, the separation along êy (the direction in
which the angular spread is measured for µ = 0) between the
antenna ports (1, 2) is lower in the ULA than that in the UCA,
causing the ports to be more correlated in the ULA. However
for the second pair, the circular fashion of the arrangement of
the antenna ports in the UCA causes the antenna ports 1 and 4
to be closer in the êy direction and therefore more correlated
than they are in the ULA topology. The same conclusion can
be drawn for the third pair of antenna ports with a larger gap
between the curves, which follows from the higher separation
between port 1 and port 7 in the ULA topology.
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Fig. 8: Comparison of correlation for µ = 0 (solid lines) and µ = π/2
(dotted lines) in the 3D-UMa scenario.
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Fig. 9: Comparison of correlation in the ULA and UCA topologies
with and without accounting for MC in the UMa scenario.

4) Effect of the angular spreads on the relative correlation
values for ULA and UCA: The performance of both ULA
and the UCA is angular spread dependent as can be seen in
Fig. 7 plotted for the 3D-UMa scenario (solid lines) and the
3D-UMi scenario (dotted lines), where the latter has a smaller
elevation angular spread [30]. It is interesting to see that ULA
is more sensitive to changes in the spread, with the correlation
decreasing more rapidly in the 3D UMa scenario, which has
a higher elevation spread, as compared to the decrease for the
UCA. This result implies the ULA can perform better in rich
scattering environments where the angular spread is generally
high. Note that the Tx power of each antenna port is higher
in the UMi case; a consequence of the incorporation of the
vertical antenna radiation pattern with a small 3dB beamwidth
in (4) into the channel model.

5) Effect of the mean azimuth AoD on the correlation values
for ULA and UCA: We plot the correlation coefficients for
µ = 0 (solid lines) and µ = π/2 (dotted lines) in Fig. 8 for the
3D-UMa scenario. The performance of the ULA deteriorates
a lot for µ = π/2, which corresponds to the endfire region of
the ULA. This is due to the fact that all the ports are placed
in the direction of the mean AoD. The correlation values for
the ports in the UCA will depend on the relative position of
the pair of ports under study as discussed in Fig. 5.

6) Effect of mutual coupling on the performance of the ULA
and the UCA configurations: In this section, we focus on 8
antenna elements arranged in the ULA and UCA topologies
and plot in Fig. 9 the normalized correlation coefficients

with and without accounting for the MC effects in the 3D-
UMa scenario. The expression for |ρMC

t | in (32) is already
normalized by the average antenna powers Ps and Ps′ . The
normalized correlation values without accounting for the MC
effects, |ρt|, can be computed using (23), normalized with
the average antenna gains to allow for a fair comparison.
The curves for the ULA topology for both cases are obtained
using expressions from [28]. The coefficients are plotted for all
antenna elements with reference to antenna element 1 for the
normalized array width of 3λ. An additional axis is provided
on the top of the figure for the UCA, representing the angular
separation of each element with the reference element 1.

The results in Fig. 9 show that the MC can, contrary
to common belief, actually decrease the spatial correlation
level between the channel coefficients, especially for antennas
placed close to each other in the direction of the angular
spread êy . This favorable result is explained by the fact that
the MC effect causes antenna pattern distortion and provides
some form of pattern diversity [18], [40]. In compact MIMO
arrays, this pattern diversity effect dominates over the effect
of the loss in spatial diversity. This has been observed in
[18], [20], [38], wherein the authors reason that the coupling
phenomenon actually decorrelates the signals by acting as an
additional “channel”. In short, the advantage we lose from
decreased antenna separation is more than compensated when
we take the MC effects into account.

However, this figure did not study the impact of MC on the
antenna gain and average Tx power. For this purpose, we plot
in Fig. 10 the results for both topologies without normalizing
the correlation with Ps and Ps′ . The value of |ρt| at s′ = 1 is
essentially ρt(1, 1), which represents the average transmitted
power by an individual antenna. The result reveals that while
MC decorrelates the channel coefficients, it also introduces a
significant power loss [39], [40]. Moreover, Fig. 10 shows that
ULA is more sensitive to the MC effects.

To conclude, there is a strong interplay between the channel
and array parameters in determining the spatial correlation
experienced by the two arrays under study. Even though the
correlation experienced by the adjacent pair of antenna ports
is lower in the UCA, but this can not be the only metric
to dictate the choice of the antenna topology for different
propagation scenarios. The ULA configuration might achieve
a lower overall correlation under some channel conditions.
We will resort to the MI analysis to see the overall effect
of the spatial correlation and draw some conclusions on the
performance of the two arrays in the 3D-UMa and 3D-UMi
scenarios.

C. Mutual Information Performance Comparison in a Point-
to-Point MIMO System

In this section, we compare the MI performance of the two
arrays under discussion to draw some important conclusions
on the efficiency of these compact arrays in a correlated
environment. For this purpose, we use the Kronecker channel
model, which is suitable for the information-theoretic analysis
of the MI and is defined as [1],

H = R
1
2

MSXR
1
2

BS , (36)
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Fig. 10: Comparison of unnormalized correlation in the ULA and
UCA topologies with and without accounting for MC.
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Fig. 11: Comparison of MI for the UCA and ULA configurations for
array width=6λ.

where X is a NMSxNBS matrix whose entries are i.i.d
CN (0, 1), RMS is the correlation matrix at the MS and RBS
is the correlation matrix at the BS. For the UCA config-
uration, [RMS ]u,u′ = ρr(u, u

′) and [RBS ]s,s′ = ρt(s, s
′),

where ρt(s, s
′), ρr(u, u′) are given by equations (23) and

(24) respectively. For the ULA, [RMS ]u,u′ = ρr(u − u′),
[RBS ]s,s′ = ρt(s−s′), where ρt(s−s′), ρr(u−u′) are obtained
using the derived expressions in [28].

The downlink of a single cell with a point-to-point MIMO
system is considered in this section with the channel param-
eters tabulated in Table 3. The MI of the NMSxNBS MIMO
system with equal power-allocation is given by,

I(SNR) = log det
(

INMS
+ (SNR/NBS)HHH

)
, (37)

where H is the NMSxNBS channel matrix in (36) and SNR
is the received signal-to-noise ratio.

A closed-form expression for the distribution of the MI
for the Kronecker model is difficult to derive. Fortunately,
tools from RMT provide us with some simple determinis-
tic equivalents of the distribution of the MI in the large
(NBS , NMS) regime. These approximations are accurate for
moderate system sizes as well. This paper uses the determin-
istic equivalent provided in Theorem 1 in [29] which says
that under assumptions A1 and A2 in [29] on the correlation
matrices, the ergodic MI of the Kronecker channel converges
almost surely to a deterministic term, i.e.,

1

NBS
E[I(SNR)]− V (SNR)

a.s−−−−−−−−−→
NBS ,NMS→∞

0, (38)

where the expression for V (SNR) is provided in Theorem 1
in [29].

This result is used to compare the MI achieved by the
two configurations in the 3D-UMa and 3D-UMi scenarios.
The correlation coefficients are computed for NBS and NMS

ranging from 4 to 14 and are used to form the matrices RBS
and RMS . Monte-Carlo simulations of (37) are performed over
3000 channel realizations of (36) to obtain the simulated MI
that is plotted along with the theoretical MI obtained using the
deterministic equivalent V (SNR) in the subsequent figures.

1) Effect of relative positioning of ports and angular
spreads: As discussed in the last subsection, even though the
correlation between the adjacent antenna ports in the UCA is
lower than that in the ULA, the ULA can still achieve a lower
overall correlation. The circular fashion of arrangement of the
antenna ports in the UCA causes correlation of the ports with a
reference port to first decrease and then increase as we traverse
the array while the correlation of all subsequent ports in the
ULA decreases as we move from port 1 to NBS . In particular
for higher angular spreads as in the 3D-UMa scenario, with
the AoDs/AoAs concentrated near the broadside of the array,
i.e. for µ = 0, the overall correlation in the channel constituted
by the ULA decreases faster as shown in Fig. 7. Consequently,
the ULA configuration achieves higher values of MI as shown
in Fig. 11 plotted for normalized array width of 6λ. Moreover,
the theoretical result in (38) coincides well with the the Monte-
Carlo simulated MI for the Kronecker channel model for a
moderate number of antennas.

Another important insight to be drawn from this result is that
even through the correlation values for all port pairs are higher
in the 3D-UMi scenario because of the lower elevation spread
as shown in Fig. 7, which is disadvantageous but at the same
time for the user within the direction of the antenna boresight,
i.e. having θ0 = θtilt, the form of vertical antenna pattern with
a narrow 3dB beamwidth, is such that the Tx power increases
with the decrease in elevation spread (observe the values of
ρt at r/λ = 0 in Fig. 5 and 7). This is because the energy
of a higher number of propagation paths is captured by the
Tx antenna pattern for scenarios with small elevation spreads.
As a consequence, the MI values for the 3D-UMi scenario for
both array configurations are higher than the values for the
3D-UMa case as shown in Fig. 11 because the effect of the
increase in the transmitted power dominates over the adverse
effect of increase in correlation.

2) Effect of inter-port spacing: As the number of antenna
ports packed in the same width increases, the ports will
become very closely positioned in the linear array. The circular
fashion of arrangement of antenna ports in the UCA will
allow for a relatively higher separation between the ports. The
adverse effect of the smaller inter-port separation in the ULA
dominates over the adverse effect of the eventual increase in
the values of correlation of the subsequent ports with the ref-
erence port as we move around the UCA configuration, which
results in a higher overall correlation in the MIMO channel
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Fig. 12: Comparison of MI for the UCA and ULA configurations for
width=3λ in the 3D-UMa scenario.
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Fig. 13: Comparison of MI for the UCA and ULA configurations
with and without accounting for the MC effects for width=3λ.

constituted by ULAs. Therefore, the UCA outperforms the
ULA as the ratio of the number of antenna ports to the array
width increases. We observe this by plotting the MI for the
normalized width = 3λ in Fig. 12 for the 3D-UMa scenario,
and see that in this case for NBS > 8, the ULA topology
achieves a lower MI. The choice of antenna topology for a
deployment scenario is therefore largely governed by the ratio
of the number of antennas to the width of the array. This
result is extremely important in the context of massive MIMO
systems, where a large number of antennas have to be packed
in a small spatial area. Here the UCA will outperform the
ULA topology and can prove to be a more effective choice
for capacity maximization.

3) Effect of mutual coupling: As discussed in the last
subsection, the effect of mutual coupling is twofold. Firstly
it reduces the correlation between the antennas elements as
seen in Fig. 9, which is a desirable effect. On the other hand,
it introduces an extra power loss as seen in Fig. 10, which is
an undesirable effect. Now we will study the combination of
these two effects on the MI of the MIMO systems constituted
by the ULA and UCA topologies. The result is plotted in
Fig. 13 for normalized array width of 3λ for the 3D-UMa
scenario. From the result, it is obvious that MC adds extra
degradation to the MI for both topologies because the adverse
effect of the decrease in the transmitted power dominates over
the positive effect of the decrease in correlation. Also, the
deterioration is worse for the ULA topology since it is more
sensitive to the MC effects. For high values of number of

elements to array width ratio, the UCA outperforms the ULA
as discussed in the last result. Also, the increase in the MI
values for the UCA with MC case (see pink curves) when
‘Number of elements’ increases from 8 to 10 is explained
by the fact that as the inter-port separation decreases, the
pattern diversity and hence the decorrelation effect becomes
very dominant, resulting in an improvement in performance.
However, the overall performance when accounting for MC
effects is definitely worse because of the power loss.

All in all, the performance of antenna arrays depends on
several factors including the channel parameters parametrized
by the angular spread and the mean AoD/AoA and the array
parameters like the number of antennas and the array width.
Results show that for similar array sizes, the ULA outperforms
the UCA for high angular spreads and low number of antennas
to array width ratio, making it a suitable candidate in rich scat-
tering environments, such as the proposed 3D-UMa scenario
in WINNER+. However, UCA is a more appropriate choice
in massive MIMO systems, where a large number of antennas
needs to be deployed in a confined space so as to minimize
the overall correlation while reaping the benefits of MIMO
techniques. To the best of the authors’ knowledge, these useful
results have not been observed by a research paper before.

V. CONCLUSION

We proposed a generalized analytical expression for the SCF
for the FD-MIMO channel constituted by UCAs of antenna
ports at the BS and the MS. The two ingredients of the analysis
are the SHE of plane waves and the trigonometric expansion
of Legendre polynomials. The novelty of the proposed method
lies in the SCF being valid for any propagation environment.
The spatial correlation expressions accounting for the MC
effects are also derived. Using these results, we compared
the correlation and MI performance of two antenna array
topologies proposed for FD-MIMO implementation, the ULA
and the UCA of antenna ports, by utilizing the information-
theoretic deterministic equivalent of the MI developed for
the Kronecker channel model. The performance patterns of
the two arrays are investigated as a function of the mean
AoD/AoA, angular spreads, number of antennas and antenna
spacing. It must be emphasized that both the azimuth and
elevation parameters must be taken into account so that an
accurate performance comparison can be made. Results show
that for similar array sizes, the ULA outperforms the UCA
for high angular spreads and low number of antennas to
array width ratio, making it a suitable candidate for rich
scattering environments. However, UCA is a more appropriate
choice in massive MIMO settings. Also, ULA is more prone
to the power loss introduced by MC between the antenna
elements. The conclusions drawn will assist researchers and
industrials in the selection of the best antenna array topology
for deployment in the emerging FD-MIMO settings.

APPENDIX A
MATHEMATICAL PRELIMINARIES

A. Spherical Harmonics
Spherical harmonics, Y mn (φ, θ), provide orthonormal basis

functions for the representation of functions on the 2-sphere
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and are defined for integer degree n ≥ 0 and integer order
|m| ≤ n as,

Y mn (x̂) = Y mn (φ, θ) = Nm
n P

m
n (cos θ) exp(imφ), (39)

where Nm
n =

√
2n+1(n−m)!
4π(n+m)! .

The array response of an antenna port can be expressed as a
superposition of spherical waves, by exploiting the SHE result
for a plane electromagnetic wave given by [43],

eikv̂.x =

∞∑
n=0

in(2n+ 1)jn(k||x||)Pn (v̂.x̂) , x ∈ R3, (40)

where i is the imaginary unit, k is the wave number, x is the
position vector in R3, x̂ is the corresponding unit vector, v̂ is
the unit vector in the direction of wave propagation, jn is the
spherical Bessel function of order n and Pn is the Legendre
polynomial function of order n. Let (φ1, θ1) and (φ2, θ2) be
the spherical coordinates of the vectors v̂ and x̂ respectively,
then by the Legendre addition theorem [43],

Pn(v̂.x̂) =
4π

2n+ 1

m=n∑
m=−n

Y mn (v̂)Y m∗n (x̂),

= Pn(cos θ1)Pn(cos θ2) + 2

n∑
m=1

(n−m)!

(n+m)!
Pmn (cos θ1)

× Pmn (cos θ2) cos[m(φ1 − φ2)], (41)

where Pmn are the associated Legendre polynomials.

B. Properties of Legendre Polynomials
The following properties of Legendre polynomials will be

exploited in our analysis.

Pn(0) = 0 for odd n, Pmn (0) = 0 for odd n+m, and
P0(x) = 1. (42)

Also the Legendre and associated Legendre polynomials can
be expanded as [44],

P2n(cosx) = p2n + 2

n∑
k=1

pn−kpn+k cos(2kx),

P̄ 2m
2n (cosx) =

n∑
k=0

c2m2n,2k cos(2kx), (43)

P̄ 2m−1
2n−1 (cosx) =

n∑
k=1

d2m−12n−1,2k−1 sin((2k − 1)x),

where the coefficients pn, c2m2n,2k and d2m−12n−1,2k−1 are generated
using the recursion relations in [44].

APPENDIX B
PROOF OF THEOREM 1

The expectation terms in (21) can be expressed as a linear
combination of the FS coefficients of the power spectra. For
the azimuth angles, we have pφ(φ) = fφ(φ), and therefore,

E[cos(2mφ)gt,H(φ)] =

∫ π

−π
cos(2mφ)gt,H(φ)fφ(φ)dφ

=

∫ π

−π
cos(2mφ)PASt(φ)dφ.

E[sin(2mφ)gt,H(φ)] =

∫ π

−π
sin(2mφ)gt,H(φ)fφ(φ)dφ

=

∫ π

−π
sin(2mφ)PASt(φ)dφ.

E[cos((2m− 1)φ)gt,H(φ)] =

∫ π

−π
cos((2m− 1)φ)gt,H(φ)fφ(φ)dφ

=

∫ π

−π
cos((2m− 1)φ)PASt(φ)dφ.

E[sin((2m− 1)φ)gt,H(φ)] =

∫ π

−π
sin((2m− 1)φ)gt,H(φ)fφ(φ)dφ

=

∫ π

−π
sin((2m− 1)φ)PASt(φ)dφ.

For the expectation terms involving the elevation angles, we
exploit the results on Legendre polynomial expansion in (43)
[44] and the relationship in (10) to expand them as,

E[P2n(cos θ)gt,V (θ, θtilt)] =

n∑
k=−n

[
pn−kpn+k

∫ 2π

0

cos(2kθ)

× gt,V (θ, θtilt)pθ(θ) sin(θ)dθ
]
,

=

n∑
k=−n

pn−kpn+k

[1

2

∫ 2π

0

sin((2k + 1)θ)PESt(θ, θtilt)dθ

− 1

2

∫ 2π

0

sin((2k − 1)θ)PESt(θ, θtilt)dθ
]
.

E[P̄ 2m
2n (cos(θ))gt,V (θ, θtilt)] =

n∑
k=0

[
c2m2n,2k

∫ 2π

0

cos(2kθ)

× gt,V (θ, θtilt)pθ(θ) sin(θ)dθ
]
,

=

n∑
k=0

c2m2n,2k

[1

2

∫ 2π

0

sin((2k + 1)θ)PESt(θ, θtilt)dθ

− 1

2

∫ 2π

0

sin((2k − 1)θ)PESt(θ, θtilt)dθ
]
.

E[P̄ 2m−1
2n−1 (cos(θ))gt,V (θ, θtilt)] =

n∑
k=1

[
d2m−12n−1,2k−1

×
∫ 2π

0

sin((2k − 1)θ)gt,V (θ, θtilt)pθ(θ) sin(θ)dθ
]
,

=

n∑
k=1

d2m−12n−1,2k−1

[1

2

∫ 2π

0

cos((2k − 2)θ)PESt(θ, θtilt)dθ

− 1

2

∫ 2π

0

cos((2k)θ)PESt(θ, θtilt)dθ
]
.

Using the definitions of the FS coefficients given in (25)-(28),
we can express the expectation terms involving the azimuth
and the elevation angles as a linear combination of the scaled
FS coefficients of the PAS and PES. Plugging the resulting
expressions in (21) will yield an analytical expression for
ρt(s, s

′). This completes the proof of Theorem 1.
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