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Highlights: 

 Slightly increasing line redundancy and decentralizing generators are effective for reducing load 

 shedding and line failures 

 Better line redundancy and generator decentralization also reduce uncertainty in cascading failure 

 consequences 

 Optimal power re‐dispatch successfully manages cascading failures in all considered power grid 

 configurations 

 Coupling synthetic yet realistic power grids with direct current (DC) cascading failure simulators 

 supports planning against cascading failures 
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ABSTRACT. To systematically study key factors affecting cascading failures in power systems, this 

paper advances algorithms for generating synthetic power grids with realistic topological and electrical 

features, while computationally quantifying how such factors influence system performance 

probabilistically. Key parameters affecting line outages and power losses during cascading failures 

include line redundancy, load/generator layout and re-dispatch strategies. Our study combines a synthetic 

power grid generator with a direct current (DC) cascading failure simulator. The impact of each of the 

factors and their interactions unravel useful insights for interventions aimed at reducing the probabilities 

of large blackouts on existing and future power systems. Moreover, conclusions drawn from a spectrum 

of different power grid topologies and electrical configurations offer more generality than typically 

attained when studying specific test cases. Line redundancy and distributed generation appear as the most 

efficacious parameters for reducing the probabilities of large power losses and multiple overloads, 

although the effect decays with network density. Also, re-dispatch strategies are more influential on the 

distribution of the cascade failure size in terms of line failures. These and related results provide the basis 

for probabilistic analyses and future design of evolving power transmission systems under uncertainty. 

Keywords: power grids, vulnerability assessment, cascading failures, DC power flow, sensitivity 

analysis, probabilistic performance metrics. 

 

1. INTRODUCTION 

The impact that a power transmission system‘s topology and associated electrical features have on overall 

system reliability is still not well understood, especially when their joint effect is considered during 

cascading failure events. In fact, when considering a fixed network topology, many different electrical 

configurations and states are possible, as placements of generation units or dispatch strategies result in 

different power system dynamics, and hence reliability considerations.  

Efforts in power system reliability research have been directed to the study of cascading failures, since 

these failure dynamics have proven serious in economic and social terms [1]. Standard practice in the 

study of cascading failures is to apply power or network flow models to a limited set of test systems to 

understand evolving system behavior [2]–[7]. Also, there are topological studies for simplified yet 

analytical explorations of system properties, typically based on samples of randomly generated networks 

when the electrical data are not available [8]–[11]. However, the probabilistic analysis of power systems 

subjected to uncertain contingencies is still limited, often without the joint effects of topological and 

electrical configurations (e.g., layout, element siting, re-dispatch). Thus, conclusions drawn to date under 

probabilistic models, while valuable, remain not easily generalizable. Our work attempts to bridge this 

gap by applying a cascading failure model based on an N-2 contingency analysis with Direct Current 

(DC) power flow analyses on a sample of synthetic yet realistic power networks generated to capture 

some of the topological as well as electrical and probabilistic features of power systems [12]. 
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While relying on DC power flow adds realism to the cascading failure model, it also requires that the 

synthetic networks be adequate electrically. Hence, we extend the algorithm by Wang et al. [12] to 

produce synthetic power grids suitable for DC power flow computations. The number of features 

characterizing power grids is high, making the impact analysis of all of them prohibitive. Consequently, 

we group key features of power grids into three different macro-areas based on known sensitivity 

analyses [2], [13]: the underlying topology, the electrical properties of its components, and the control 

rules governing the system. This grouping is also consistent with the way each synthetic power grid is 

generated, as the topology is constructed first, then the topology is enriched with the electrical parameters 

(e.g., impedances, power demand and supply levels, generation siting, etc.), and finally, the 

dispatch/control rules are embedded into the cascading failure simulator. 

At the topological level, the line redundancy of the network is chosen as input variable, since adding lines 

is the baseline approach for decreasing systems‘ congestion and has a straightforward interpretation from 

an infrastructural point of view. At the electrical level, the generator/load buses layout is considered a key 

input that we vary in order to compare various degrees of centralization, from clustered to a more 

distributed siting of loads and generators. The interest in power generation layout lies in the evolution 

towards smart grids [1], [14]. Finally, from the operational point of view, we consider two different power 

re-dispatch strategies. 

We carry out computational experiments from full factorial designs to study the effect of key input 

parameters and offer general insights [15].  The input variables involved are fully crossed with each other, 

allowing us to gather data for rich combinations of their selected levels and associated effects on 

cascading failures. Since this approach relies on a catalogue of power grids instead of a particular one, the 

conclusions drawn have more general appeal than what would be possible if considering a single test 

case.  

As for system performance, we study the reliability of the power grid, understood here as the ability of the 

network to deliver power to customers (via a power loss metric), while the physical infrastructure 

integrity is preserved (via counts of outages across lines) [1]. The computational experiments that follow, 

allow us studying power loss and line outages probabilistically, particularly as the topological, electrical 

and control parameters of the synthetic networks vary. This work thus complements two of the 

approaches that dominate existing literature: one general and often probabilistic, but limited to topological 

analyses [16], [17], and the other comprehensive in its electrical aspects but specific to a system model 

[18], [19]. We aim at a middle point, where we use DC power flows and also study a variety of system 

configurations and dispatch strategies, so as to gain generalizable insights for future operation 

management and reliability-based design of evolving power networks.   

The rest of the article is organized as follows: Section 2 describes our global strategy to study evolving 

infrastructure, particularly via computational experiments. Section 3 describes the power network 

generation procedure and our updates to make key system parameters tunable. Then, Section 4 describes 

our cascading failure model. Section 5 provides simulation results, and Section 6 discusses outputs and 

draws insights for network operation. Section 7 concludes the paper and provides ideas for future 

research. 

 

2.  GLOBAL STRATEGY FOR STUDYING EVOLVING POWER SYSTEMS 

To explore how key inputs affect cascading failures in power systems, we perform a full factorial 

experimental design to elicit general conclusions.  Appropriate variables and models for our experimental 

designs as discussed next. 
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2.1 Full Factorial Design 

Throughout our work, we will deal with a power grid object defined as follows: 

 

                        (1) 

 

where   is the set of buses,   is the set of lines, and         is the power grid topology. Vector   

captures the impedances of the lines, while            are the power demand, supply, and maximum 

supply of the nodes in  , respectively. Vector   denotes the capacity of the lines. We define the subset 

               as the electrical properties of the power grid. 

Our goal is also to determine which parameters affecting   in Eq. (1) are best at reducing cascading 

failures, so as to translate findings into design guidelines generalizable to evolving power grids. In 

particular, we consider factors such as: line redundancy  , the loads/generators layout K, and re-dispatch 

strategies. Note that topology and electrical features are a function of these factors, such that 

                               

In particular,   will vary in the range        interpolating electrically networks generated by the RT-

nested Small World (RT-nestedSW) algorithm [12], where a realistic topology corresponds to    , an 

associated spanning tree to      and a greedy triangulation (or dense planar network) to    . In this 

way, we are able to produce power grid structures with varying levels of line redundancy. Parameter   

will vary in       and is used to produce power grids with increased decentralized generator layout as K 

increases.  

In addition, we analyze the impact on cascading failures of different re-dispatch strategies. The term re-

dispatch refers to the action of changing the power supply or demand at the power grid‘s nodes in real 

time, so that the total supply and demand are balanced. We compare two re-dispatch strategies in our 

experiments. First, a proportional strategy where power supply and demand at the nodes changes 

proportionally to their initial values, and deemed as a baseline strategy. Second, we consider the OPA 

model [20], which is a simplification of how an operator might intervene in a realistic system when facing 

complex contingencies. It consists of an optimization routine which minimizes the power losses, subject 

to constraints in power carrying limits. The OPA model has been used in applications with fast dynamics 

and long term evolution of power transmission systems [4]. 

The computer experiments are set as follows: power grids with different values of   and K are generated 

with our extended RT-nestedSW algorithm, for all their possible combinations. For each of these power 

grids, two separate N-2 contingency analyses are performed, employing one of the two re-dispatch 

strategies each. This procedure is tantamount to a balanced full factorial experimental design [15], that 

unravels the single and joint effects of input factors. Table 1 shows the planning matrix of the experiment.  

 

Table 1. Planning matrix of the full factorial experiment with each row representing a different factor and 

each column a different level. 

Factors/Levels  0 1 2 

Line Redundancy              

Generators Layout K=0 K=0.5 K=1 
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Re-dispatch R:= Proportional R:= OPA  
 

2.2 Response Variables 

We compute the total power not served      

        
 and the number of line failures from cascades      

       
, 

following N-2 contingency analyses on power grids in  , associated to a pair of lines        .  In 

particular, two distinct lines         are selected and removed from  . Hence,   evolves from its initial 

equilibrium state    into a new state          following the dynamics we model trough subsequent 

Algorithm 4.1. This procedure is then repeated with replacement for all distinct pairs of lines belonging to 

 . We then define the total N-2 contingency analysis effects as power loss      and line failures      as 

follows: 

 

        ∑      

        
           (2) 

        ∑      

        
          . (3) 

 

Note that      and      are computed for each power grid topological and electrical configuration as well 

as re-dispatch strategy. Knowing how these performance indicators vary in correspondence to different 

configurations of input factors allows us to understand their global impact on cascading failure 

vulnerability and associated probabilities of occurrence.  

 

3.  SYNTHETIC POWER GRID GENERATION 

The following subsections review the procedure to generate new network topologies in agreement with 

real power grids. Then, the authors explain the role of line redundancy and generator layout factors     

to enable sensitivity analyses. 

 

3.1 Topological Properties of Power Networks 

Consider a power grid topology        , with | |    as the number of generation sources, 

aggregate loads at the substation level, and transmission nodes, and | |    as the number of links or 

transmission lines. Research has shown that commonly used synthetic graph structures such as small 

world [21], scale free [22] and random networks are not able to capture the topological features of real 

power grids [12], [17], [23]. For example, Wang et al. [12] found that power grids have different 

connectivity scaling laws than standard small world graphs. In fact, the average nodal degree     is 

constant and does not scale with the network dimension, as would be the case for the small world model 

[21]. Meanwhile, Cotilla-Sanchez et al. [23] noticed that the average path length     scaling properties 

of real power grids are in between regular grids and small world networks. Overall, these and other 

studies call for models that capture system topology as well as functionality consistent with practical 

power systems [12], [16], [17]. 

 

3.2 The RT-nested Small World Model 
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Wang et al. [12] postulated nesting several small-world (SW) subnetworks into a regular lattice to retain 

electrical system features while using simple topologies that exhibit realistic scaling properties [16], [17]. 

Another power network generator was used in Purchala et al. [24] to test DC power flow accuracy in 

active power considerations. They found bounds for the lines reactances and resistance ratios, below 

which the DC power estimation has unacceptable high errors. The RT-nestedSW model has also been 

refined by Hu et al. and Genger et al. [25], [26] in order to produce synthetic DC and AC power flow test 

cases.  While synthetic models continue development, we adopt the basic RT-nestedSW perspective and 

expand as needed to realize our experimental design.  The method [12], and associated extensions are 

summarized in Table 2. 

 
Table 2. Summary of the RT-nested Small World model (RT-nestedSW) and extensions.  

Pseudo-Code RT-nested Small World Model Generation 

Step 1 Select the desired number of subnetworks, their properties, and a geographical distance threshold   . 
Step 2 Construct subnetworks as follows: for each node   select links at random (their number follows a Poisson 

distribution with mean    ) from nodes   belonging to    
   

 {  |   |      (i,j are the indices of the 

nodes considered). 
Step 3 Rewire the subnetwork links using a Markov chain model. 
Step 4 Randomly connect the subnetworks with each other, through lattice connections. 
Step 5 Assign the lines‘ impedances using a suitable probability distribution model. 
Step 6 Assign power demand and supply to the nodes in the network. (Extended) 

Step 7 Assign lines capacities. (Extended) 

 

The input parameters necessary to initialize the algorithm in Step 1 {        , and the number of 

subnetworks}, are estimated from the IEEE 118-node system [27] as our reference realistic network 

throughout the study. Hence, Steps 1-4 generate power networks         with topological properties 

consistent with real systems.  Then, in Step  , line reactances are randomly generated from a specified 

heavy-tailed distribution fitted to the real power grid that one wishes to use as a reference. In this work, a 

Gamma distribution is found to fit well the impedances of the IEEE 118-node system [12]. For each link 

of the network we sample an impedance value. Then, the sampled values are sorted by magnitude in 

ascending order and grouped into: local links, rewire links, and lattice connection links according to 

corresponding proportions. Line reactances in each group are then assigned randomly to the 

corresponding group of links in the topology. We will denote with   
 the reactances vector associated to 

a particular topology  , where the component   
 

 denotes the reactance of line    .  

With steps 6-7, we extend the RT-nestedSW algorithm to assign electrical properties, 

            —necessary for DC power flow computations and cascading failure analysis as 

described later. Networks described here constitute the baseline systems corresponding to a line 

redundancy level of     (Table 1). Note that changes in   result in changes to the parameters     
   of step 1. We explain next how the line redundancy of these baseline networks is varied to form 

topologies with levels      and    . 

 

3.3 Bounding Models 

The range in which baseline topologies are allowed to vary is bounded from below and above by two 

limiting cases: the power grid‘s spanning tree (ST) which has a minimum level of lines to guarantee 

connectivity, and the greedy triangulation (GT) which approximates the maximum number of lines in a 

two dimensional planar space.  

From each baseline network generated with the RT-nestedSW algorithm,              and associated 

impedance vector    , we obtain the                 and                 networks. Note that 
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        , while      is the subset of lines belonging to a spanning tree of   , with their respective 

impedances. Similarly,          and      is the superset of lines belonging to the planar triangulation 

of   , where the impedances of the lines belonging to          are generated as in subsection 3.2. 

Factor   varies in the range        where 0 indicates the baseline topology G and values in        

represent the percentage of lines belonging to        up to obtaining G. Meanwhile, values in 

      indicate the percentage of lines belonging to        which are added to G up to forming a 

GT. Figure 1 shows topologies for     , 0 and 1. 

 

 

(a)    (b)    (c) 

Figure 1. Sample topologies with different redundancy levels for the same node set layout: (a )      

(           ), (b)     (            , and (c)                  . 

 

3.4 Siting of Loads and Generators 

Power demand vector    and a power supply vector    across the nodes‘ set    , help determine the 

layout for generators/loads within the synthetic power grids, whose assignment is controlled by parameter 

  in Table 1.  From the loads perspective, we use as vector of power demand    a set consistent with the 

IEEE 118-node system [27]. We only retain the original components of the power supply vector    and 

maximum power supply vector      for the 15 major power suppliers, as the IEEE-118 system has 

generators overrepresented (i.e., several serve as boundary conditions to the larger system from which it 

was extracted). We complemented available data in terms of       for the IEEE 118 system, with 

optimal power flow test case data included in Zimmerman et al. [28]. Hence, each component     
       and             represents the power supplied, the maximum power that could be 

supplied, and the power demanded by bus  , respectively (if   is a load node            ). 

Therefore, synthetic power grids are composed by 15 generator buses, 93 load buses and 10 transmission 

buses, to maintain realistic proportions. We use the following procedure which relies on a spectral 

clustering algorithm [29] to assign the bus positions of the 15 generators: 

 

1. Select extremes in the power grid as       (the extremes are the pair of buses most distant 

from each other), and a threshold distance      (intended as number of links as most lines have 

similar length).  
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2. Build the subnetwork  ̃     ̃  ̃  by removing from   all the buses that are at a distance more 

than   from    , and divide it in    bus communities  ̃   ̃     ̃   using the spectral 

clustering algorithm. 

3. Select a node at random for each community  ̃ , and assign to it a power supply and maximum 

power supply component. 

 

This procedure forces the generators and the loads to be clustered together depending on: 

 

                           (4) 

 

where      is the minimum distance (in number of links) where at least 15 buses are at a distance less 

than      from     ,      is the diameter of the network and         is the input factor in our 

experiment. Note that in this section we are interested in modelling different load/generator geographic 

layouts. For this reason, Eq.     uses the number of links as distance, as the link length distribution is 

concentrated on a small range of values [30], and thus adequate to capture geographic patterns; 

alternatives such as electrical distances [31], are also desirable for dynamic analyses, but not necessarily 

to reproduce geographical layout patterns as in Figure 2. This figure has three examples of generator 

positioning for different values of  , so as to assist unraveling the impacts of generator siting on 

cascading failures.   
 

In Eq.    , as K approaches  , d  approaches      and only a few nodes close to the network extremes 

are available to become power generators.  This results in most power generators concentrated in a small 

portion of the power grid, spatially distinct with respect to the rest of the grid. As K approaches   more 

and more nodes become available as generators, hence power can be supplied by buses all over the power 

grid, and the spatial distinction between generators and loads blurs.  In particular, the values of   

considered for sensitivity analysis are:  ,     and   (Table 1). This factor allow us exploring the effect of 

spatially distributed versus centralized power generation, which is of interest from a ―smart grid‖ 

perspective, especially as the mainly centralized power generation structure of existing grids evolves into 

one that admits decentralization and distributed generation [1]. As the position of power generating units 

has been found in Pahwa et al. [13] to affect the frequency and voltage stability of power grids, position 

determines the paths in DC power flows.  

 

 
(a)    (b)    (c) 

 

Figure 2. Sample networks with different generator set positions according to: (a)    , (b)      , 

and (c)    . Nodes with black fill are generators; other nodes are loads. 
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3.5 Line Capacity Assignments 

To perform cascading failure simulations, it is necessary to also have transmission lines‘ capacity data 

consistent with functional systems. In real power system lines, capacities belong to a set of finite discrete 

values, while power grids are usually     compliant. To produce synthetic power networks with these 

features, we build a model for the line capacity allocation that differs from a proportional model usually 

found in the literature [13], [32], [5], [33]. Therefore, to sample the capacity    of line  , we base our 

model on a truncated exponential distribution, Eq. (5), with parameter   estimated from the power flow-

to-capacity ratio data of a large real system (we used a Kolmogorov-Smirnov test to confirm that the 

exponential model was not rejected).  Specifically, we studied the Polish grid available in Zimmerman et 

al. [28] to set our exponential model, as it is one of the most complete power transmission network 

datasets (note that the IEEE 118 system does not offer such details): 

 

   |     
       

 |  | 
 

 |  |

 

  ( 

 |  |

  
   

  
 

 |  |

  
   

)

 
(  

      
   ]

         (5) 

 

where   is the indicator function,   is the redundancy level of the network to which line   belongs to, 

   
    is a capacity limit dependent on the line redundancy,    is the power flowing through   when the 

DC power flow is computed on the full network, and   
    is: 

 

  
         |  | |  

 | |  
 |   |  

 |             (6) 

 

with   
  as the power flowing through line   when line   is removed from   , considering   

   , and 

  |  |. Note that the support of the probability density function (pdf) in Eq. (5), for different values 

of    and   
   , covers capacity values that are finite and guarantee     compliance. However, since 

we want our sample to belong to a discrete set of capacities, we discretize Eq. (5) among equally spaced 

quantiles:    ̅    ̅     ̅
   , where    is dependent on the average number of lines of the networks 

with redundancy  : 

 

       ̅|     
       

 
 

 |  |

 ̅   
 

 |  |

 ̅   

  ( 

 |  |

  
   

  
 

 |  |

  
   

)

 
(  

      
   ]

   ̅ .     (7) 

 

The distribution in Eq. (7) reflects discrete and finite capacities as seen in real systems.  Our line power 

flow-capacity ratios are distributed in a similar way to the Polish grid as a reference, and are initially 

    compliant. The demanding computation here is for   
   

, as one needs to compute the power flow 

for a network with one of its lines removed, for all of its lines in all the generated networks.  After 
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applying consecutively all the procedures just described, a complete set of synthetic DC power grid 

models   is obtained whose elements     are defined as in Eq. (1). 

 

4. CASCADING FAILURE MODEL 

In the following sections we explain the cascading failure model employed to study all the power grid 

configurations in  . 

 

4.1 Algorithm for Cascading Failure Process 

The general steps are illustrated in Algorithm 4.1 (Cascading failure simulator, CFS) based on Bienstock 

[2]. The algorithm receives as input a power grid object  , and the indices of the initial couple of line 

failures         to study N-2 reliability compliance. Then, Step 1 computes the power flow at the 

equilibrium state before initial failures. Step 2 applies the initial failure to the power grid by removing the 

targeted lines. Then, each iteration   of the For loop corresponds to a failure event in the cascade 

simulation [i.e., when some lines become overloaded, with     corresponding to the initial failure of 

       ]. If the initial failure does not lead to a cascade, then CFS 4.1 stops at    . Step 3 is necessary in 

order to deal with islanding when line failures break the original network   into multiple connected 

components which might have an imbalance in power supply or demand [34]. Step 3 is handled by a DC 

re-dispatch logic that will be explained in Section 4.2. At the end of the simulation, systemic metrics 

     

        
 and  

    

       
 are computed, and after the algorithm has run for all the couples of lines of the 

network,      and      are computed as in Eq (2)-(3). 

 

Algorithm  4.1: CASCADING FAILURE SIMULATOR (CFS) 

Input: Power network  , initial failures         

1.     ,compute    vector of power flow in    

2.         {      }                 

For:         Do 

3. Adjust load and generation  := {proportional or OPA} strategy 

4. Compute    power flow vector in    

5. Identify    as the set of lines outaged in iteration r 

If |  |    

6. Set                                  

Otherwise: END 

 

4.2 Re-Dispatch Logic 

During a cascading failure it is possible that an originally connected power network becomes separated in 

  subnetworks or islands:                  [2]. Each island, being a subset of the original power grid 
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 , is defined consistently with Eq. (1) as follows: 

                                                       . In principle, islands do not have 

balanced power supply and demand, thus requiring a readjustment in vectors       through an 

operation called re-dispatch. Re-dispatch is not a property of the power grid structure of Eq. (1), and 

hence it is embedded in Step 3 of the CFS Algorithm 4.1. We could have chosen other control actions; 

however, re-dispatch is still one of the most common operational actions used to reduce costs and 

counteract line overloads. Meanwhile, other operations such as transmission switching are mainly applied 

for planned outage management and costs reduction, but their impact on reliability is only starting to be 

understood [35].  Hence, at each iteration   of an overloading event, the proportional routine adjusts 

power in                  as follows:  

 

                
       

     
 
    

       
        (8) 

 

where    ,    and    take different values depending on particular situations: 

 

   
   

   

   
     

 
                      

          
         (9) 

      
 
 

          
           

          
    

         
       

                        
       

          
     (10) 

   
     

   
      

 
      

        
   

      
                 

            
     (11) 

 

where       
    ∑    

   

   
    ,       

    ∑    
   

   
    are the total power generated and demanded in 

island j before the overloading event r. Also,          ∑         
     is the total power capacity of 

the island. This proportional logic is simple by not taking into account the capacities of the surviving lines 

in the system and is close to a ―no-redispatch simulation‖, particularly as it maintains power balance in 

the network with limited optimization steps, intervening only in case of islanding. Proportional power 

generation is still frequently used in practice as in the case of generator disconnections [34]. In the case of 

fast cascading failures, there could be insufficient time to carry out more sophisticated than proportional 

interventions. Hence, the proportional logic offers a suitable baseline for comparison with more 

sophisticated optimization based strategies. 

 

In contrast, the OPA model re-dispatches power by solving the following linear program for each island 

                : 

 

               solve : 

 

          ∑        
        ∑        

           (12) 

 

Subject to: 

 

              
                     (13) 

                    
           (14) 

∑          
          ∑     

    
   

       
          (15) 

                                                  (16) 
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where     is the     row of the susceptance matrix   of the network.  The objective function in Eq. (12) 

allows to re-dispatch power giving priority to generators by penalizing power demand modifications, as 

avoided whenever possible in practice. Constraints in Eq. (13) make sure that the power supplied by each 

generator is always below its maximum capacity, while constraints in Eq. (14) bound the power 

demanded from each load to its initial value (when the grid is in equilibrium). Constraints in Eq. (15) 

ensure that in each island, supply and demand are balanced, and constraints in Eq. (16) force the re-

dispatch action to respect the surviving lines‘ capacities. Since in real situations the thermal rating of 

transmission lines is never known exactly and depends on external conditions as well as intrinsic 

properties of the material and shape of the conductors, a small error noise      is introduced in the 

nominal capacity value   .    is randomly sampled from a uniform distribution between -0.01 and 0.01 

every time the optimization is performed. After solving the linear program, the power supply/demand of 

each bus in      is adjusted: 

 

   
     

                         (17) 

   
     

                         (18) 

 

The OPA model is a simplification of how a power grid operator might intervene in re-dispatching power. 

It has been used to solve optimization problems related to the prevention of blackouts [36], as well as to 

study the vulnerability of interdependent systems [37]. 

 

 

5. COMPUTATIONAL EXPERIMENTS AND RESULTS 

5.1 Impact of Topology on Cascade Failure Vulnerability 

Figure 3 shows the log-log and semi-log plots of the tail distribution of response variables       and       

for the original synthetic power grids and the two bounding topologies derived in Section 3.3, 

representing various line redundancy factors  . 

As expected, the complementary cumulative distribution function (ccdf) for baseline networks (   ) is 

halfway vulnerable between power delivery interruptions in the tree network (    ) and the greedy 

triangulation       [Figure 3(a)]. For     , the power grids show high probabilities of power 

losses, as the probability of             is above    . Since power losses depend on islanding and 

bus disconnections in our model, such strategies are at odds when      as only minimal sets of lines 

necessary to ensure connectivity are present. Hence, each line failure is sufficient to split the grids into 

multiple connected components and, depending on the position of generators, cause power losses. When 

    and    , topologies are less sensitive to line failure given more alternative paths to satisfy 

demands, and in most cases few failures do not alter system-level functional pathways. In fact, the 

probability of having             after a double contingency is approximately    for    , and 

below       for    . However, note that the tail of the ccdf for     still reaches values 

comparable to the worst scenarios in the tree networks, signaling undesirable configurations although at a 

much lower frequency. No such configuration are present in the greedy triangulation given the short tail. 

The maximum power losses for the three different configuration are: 3,879 MW for     , 3,098 MW 

for     and 598 MW for     on a total initial power production of 4,377 MW.  

The role of line redundancy is different with respect to     , where Figure 3(b) shows that the     

topologies have higher probabilities of additional line failures after the initial double line contingency. 

This is because line overloads affect lines belonging to alternative paths, and since in      

configurations only one path exists between each couple of buses, no overload due to power flow re-
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distribution is possible. In contrast, the      and     topologies can be subject to line failures when 

the power flow is re-directed. The tail distribution of       is higher for     than     showing that 

      is non-linear and non-monotonic with respect to  . The     networks have a much higher 

number of alternative paths than the      configurations, thus the power flow re-directed by the initial 

line failures is dispersed among a larger set of possible alternative routes.  Specific results show that the 

maximum number of consecutive overloads for the three different structures is 4 for     , 28 for 

    and 15 for    . 

 

(a)      (b) 

Figure 3. Probabilistic response variables as a function of topology variations governed by  : (a) log-log 

plot of the tail distributions of      , and (b) semi-log plot for the tail distribution of      . 

 

5.2 Impact of Generators Positions 

Regarding the electrical structure, there is impact from different positions of generator buses via the   

factor (spanning from a centralized power supply layout to a distributed one). Figure 4 shows the log-log 

plot of the empirical tail distributions for       and semi-log of the same quantity for       for the 

different levels of factor  —here we considered 60 different configurations per group for a total of 360 

cases. 
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   (a)      (b)    

Figure 4. Probabilistic response variables as a function of siting factor K: (a) log-log plot of the tail 

distributions of      , and (b) semi log plot for the tail distribution of     . 

 

Figures 4(a)-(b) show that the probability of both high power losses and additional line failures decreases 

as   increases (i.e., as we move from a centralized structure to a distributed one). In fact, centralized 

power generation structures have important tie lines which connect the power supply agglomerates with 

the power demand sites. Failing these tie lines cause more widespread power interruptions as reflected in 

the higher values of expected      . In contrast, the distributed generation cases (   ) are more robust 

since the supply and demand buses are spread through the network and not separable by a few line 

failures. These general considerations do not apply equally to every topological type, as one can see from 

the multivariate chart for the     groups in Figure 5. As expected,      networks are greatly 

influenced by the siting of generators. In fact, in centralized generator configurations the number of tie 

lines is minimal for this type of network. Even the initial double contingency, in some configurations, can 

disconnect entirely the supply nodes from the demand nodes. The other network topologies are not so 

sensitive, thanks to their N-1 compliant design, as even when all generators are clustered together, there is 

enough redundancy in the tie lines to prevent the complete power supply/demand disconnection (see 

Figure 2 for clustering examples).  

The layout of load and generators seem to affect the line outages      in all configurations, especially the 

    case. For      the distributed generators slightly increase the quantity of line outages in the 

networks     —an opposite trend with respect to        . Overall, one notices that the role of  , at 

low to medium levels that capture most realistic systems, is critical with respect to   in determining the 

behavior of both power losses and line failures. 
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(a)      (b) 

Figure 5: Multivariate chart of the group average of (a)     , and (b)      with respect to   and  . 

 

5.3 Impact of Re-Dispatch Policy 

In addition to the topological structure and electrical features of a power grid, the re-dispatch of power 

generation is one of the most frequently used control actions taken by operators to decrease operational 

costs and increase reliability (thus essential in the case of islanding [34]). When contingencies strike, re-

dispatch is also applied as a mitigation action to avoid additional cascade failures; however, in some real 

fast-evolving cases, wrong re-dispatch can actually worsen the situation [38]. Figure 6 shows the log-log 

plot of the tail distribution for       and the semi-log plot of the tail distribution for      , across cases 

which share the same re-dispatch procedure. In particular, we consider a proportional procedure and the 

OPA model. The impact of the more sophisticated OPA control strategy in preventing overloads is clear 

in Figure 6(b). In fact, different from the proportional model which tries to accommodate the demand in a 

greedy way, the OPA model sacrifices power demand in order to prevent line failures whenever the linear 

program (12)-(18) is feasible, thus preventing cascading failures to spread. Regarding      , OPA seems 

to succeed in reducing power losses in the most extreme scenarios, but does not have significant impact 

on small and medium power outages as evidenced in Figure 6(a). This is because the OPA policy focuses 

on optimizing power losses under the constraint of no additional overloads [Eq. (16)], thus avoiding 

extended cascades which represents the extreme scenarios where large amounts of power are lost. 

Figure 7 shows the multivariate chart for     , comparing the mean effect of the combinations of the re-

dispatch factor with topology and generator position. The OPA re-dispatch successfully prevents line 

failures in all different topologies and also with respect to all generator configurations in K. Overall, the 

best improvement is obtained in the intermediate line redundancy level     which was identified as 

more vulnerable to line overloads (and the closest to redundancy levels in practice). Meanwhile,      

offers no discernible interaction pattern, mainly because as noted in Figure 6, the main effect of the re-

dispatch factor on      is itself weak, influencing the outcomes of only rare scenarios. 
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   (a)       (b)    

Figure 6. Probabilistic response variables as a function of re-dispatch strategy: (a) log-log plot of the tail 

distributions of      , and (b) semi-log plot for the tail distribution of     . 

 

 

   (a)      (b)    

Figure 7. Multivariate chart for identifying interactions between (a) re-dispatch and topology, and (b) re-

dispatch and generator siting K. 

 

6. Discussion: Guidelines for Power Grid Design and Operation 

This work shows that line redundancy and generator/load layout factors have a significant impact on the 

robustness of power grids to power loss and cascading line failures. From the line redundancy 

perspective, a minimum amount of redundant transmission lines is clearly necessary to avoid power 

interruptions every time a line fails. As shown in Figure 3, if topologies are denser than the      case 

(approaching the     layout), power losses decrease, although it is still possible to overload lines due 

to power flow re-distribution, and lead to widespread blackouts. At an extreme, if a considerable number 

of redundant lines are added (approaching the     layout), it becomes possible to do both: 

significantly decrease the overload frequency of the transmission lines and avoid large blackouts. In 

practice, however, building new transmission is too expensive to pursue a     power grid. Therefore, 
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we identify a baseline combination of the topological factors of redundancy and generator layout which, 

while being attainable in practice, still achieve a good level of protection to cascading failures. To this 

end, we perform additional simulations with power networks with intermediate redundancy levels, in-

between           . Since the design of the control strategy can be carried out independently from 

the choices of   and  , we perform simulations with the proportional re-dispatch only. In this way we 

obtain lower bounds on the power network robustness that can then be further improved by applying a 

more sophisticated control strategy, such as OPA (Figures 6-7). Figures 8(a)-(b) show the confidence 

intervals for the mean of      and      as we vary the redundancy level of the baseline case (0 on the x-

axis) toward -1 or 1 with proportional re-dispatch.  

 

   

   (a)      (b)    

Figure 8. Confidence intervals of the group mean of (a)      and (b)      for different line redundancy 

values. 

Figure 8(a) shows that adding lines always helps saving power losses as      is monotonically decreasing. 

The behavior of      is more complex and not monotonic as also evidenced in Figure 3. Having only a 

few redundant lines above the ST configuration leads to highly vulnerable topologies, while continuing to 

add more lines after the peak slowly improves the situation [Figure 8(b)]. Also, after     of the lines 

which separate    from   are added to the latter, significant improvement is achieved, but beyond that 

point improvement is marginal. Hence, building new transmission lines would not be the most economic 

and time efficient strategy to reduce the power grid risk of cascading failures for denser topologies, so 

measures relying on control strategies and/or distributed generators should also be tried. 

Considering the layout of loads and generators we show they affect mainly     . On average, more 

distributed configurations render less power loss and noticeably smaller cascading failures. The 

magnitude of the improvements depends on the redundancy level of the network. In particular, the lower 

the number of redundant lines in the grid the more sensitive the responses changes in generator layout. 

Figure 9 shows the confidence intervals for the mean of      and      as we vary the redundancy level of 

the baseline topology for the three different generators layouts. Looking at the confidence bands in 

Figures 8(b) and 9(b), we notice how for Ntot the intervals are wider for sparse topologies and clustered 

generators layouts. 
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     (a)                (b)    

Figure 9. Confidence intervals of the group means of (a)      and (b)      for different line redundancy 

values and generator layouts. 

These results suggest that dispersing power generating units across the power grid helps to avoid line 

overloads whenever the number of redundant lines is not sufficient. This type of intervention is happening 

ad-hoc via smart grid technologies and distributed generation (DG) today. Most likely, combinations of 

transmission line build up and DG, which require novel controls, offer a foreseeable solution to manage 

power losses and cascades in evolving power systems.  

Regarding re-dispatch, we find it has a determinant role in avoiding the overload of additional 

transmission lines after initial contingencies materialize. Moreover, corrective re-dispatch actions interact 

in a synergistic way with the power grid topologies, bringing weaker configurations at approximately the 

same level of the stronger ones. In power grids vulnerable to overload, the optimized OPA model could 

generally avoid large scale cascades and associated blackouts, relative to simpler proportional strategies.  

 

7. Summary and Conclusions 

This study develops new strategies to evaluate cascading failure dynamics through a broad set of realistic 

power grid topologies operated with different power re-dispatch strategies. Cascading failures are 

sensitive to the initial power grid topology, supply/demand states, and the control actions applied while 

cascades evolve. Most existing work is specific to case study systems with set topology, and thus 

conclusions are typically not generalizable. The approach taken in this work is instead to explore key 

topological, electrical and control inputs across realistic power grids in order to find parameter settings to 

safeguard grids from cascading failures. The quantitative results drawn from this exploration are 

translated into high-level guidelines for reliability-based power grid design that are generalizable, since 

the global-to-local computational strategy employed here is probabilistic and accommodates an ensemble 

of topological and electrical system configurations.  

Results show that for reducing the probability of large power losses, improvements at the structure/layout 

levels are necessary, including strategies that increase line redundancy, decentralize generators, or use 

combinations of them (at levels not too distant from realistic system configurations). Meanwhile, if major 

risks derive from too frequent overloads, it is better to inspect the control policies currently employed in 

the system and assess if it is necessary to improve or optimize them. In particular, power re-dispatch 

shows that line overload containment through optimized load shedding and power generation re-
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scheduling is effective in prevent the propagation of failures in all the power grid configurations 

considered. 

Overall results show that the best practical solution to the problem of minimizing the probability of power 

losses and multiple line overloads is to have a topology slightly more redundant than the average level for 

realistic systems         , coupled with distributed generators layout       . In addition to this 

topological solution, an optimized re-dispatch strategy would bring even greater benefits by curtailing the 

few cascading failures that still can breach a robust power network design.  Also, increased line 

redundancy and generator decentralization levels reduce the variability of performance measures, such as 

the number of lines overloaded, furthering the manageability of complex power systems. 

Future research includes extending the computational experiments presented in this work by considering 

AC power flow [34] and other forms of control actions such as those that modify the topology of the grid 

[35]. Moreover, instead of considering single or double contingencies, the initial failure events could be 

generated with hazard-consistent simulation approaches, so as to represent risk due to extreme events and 

quantify the associated uncertainty in the cascading dynamics of power grid systems. 

 

NOTATION LIST: 

Factors 

 :  line redundancy factor 

 :  generator layout factor 

    re-dispatch factor 

 

Sets 

  : set of power grid objects 

 : set of arcs of the graph representing the power grid topology 

 :  set of vertex of the graph representing the power grid topology 

 

Objects: 

  : power grid object 

  : power grid object at initial state  

  : power grid configuration after the r
th
 line failure event   

 

Power grid electrical parameters: 

 : vector containing the impedances of the arcs  

  : vector containing the power demands for buses in the power grid 

   : power demand for bus   
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  : vector containing the power supplies for buses in the power grid 

   : power supply for bus   

    : vector containing the power supplies limits for buses in the power grid 

     : power supply limit for bus   

 : vector containing the capacities for the arcs in the power grid 

 

Power flow and capacity allocation parameters and variables: 

  : line of the power grid defined as an arc with impedance and capacity         

   : power flowing through line   

  
  : power flowing through line   when only line   is failed  

  
   : maximum power flowing through   obtained from     contigency analysis 

   : power flow vector associated with     

  ̅ : i
th
  smaller capacity value  that can be sampled from the capacity distribution 

   
   : maximum capacity value allowed for a given value of line redundancy   

 

Re-dispatch parameters and variables: 

   : coefficient for proportional power generator adjustment for bus   (proportional re-dispatch) 

   : constant coefficient for power generator adjustment for bus   (proportional re-dispatch) 

  : coefficient for proportional power demand adjustment for bus   (proportional re-dispatch) 

    : power generation adjustment vector (OPA re-dispatch) 

    : power demand adjustment vector (OPA re-dispatch) 

    : power generation adjustment for bus   (OPA re-dispatch) 

    : power demand adjustment for bus   (OPA re-dispatch) 

  : susceptance matrix 

   : noise in the capacity nominal value for line     

 

Response measures: 

     

        
: amount of power not supplied at the final state when       are selected as initial failures 

 
    

        
: amount of lines failed at the final state when       are selected as initial failures 

    : total power loss across N-2 contingencies 
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    : total cascading lines across N-2 contingencies 
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