D. P. Anderson, Wear Particle Atlas. Revised. Available online, p.12, 2018.

J. Edmonds, M. S. Resner, and K. Shkarlet, Detection of precursor wear debris in lubrication systems, Proceedings of the 2000 IEEE Aerospace Proceedings, vol.76, pp.73-77, 2000.

W. Hong, S. Wang, M. M. Tomovic, H. Liu, J. Shi et al., A Novel Indicator for Mechanical Failure and Life Prediction Based on Debris Monitoring, IEEE Trans. Reliab, vol.66, pp.161-169, 2017.

X. Zhu, C. Zhong, and J. Zhe, Lubricating oil conditioning sensors for online machine health monitoring-A review, Tribol. Int, vol.109, pp.473-484, 2017.

W. Hong, S. Wang, M. Tomovic, L. Han, and J. Shi, Radial inductive debris detection sensor and performance analysis, Meas. Sci. Technol, vol.24, 2013.

T. Li, S. Wang, J. Shi, and Z. Ma, An adaptive-order particle filter for remaining useful life prediction of aviation piston pumps, 2017.

T. Wu, Y. Peng, H. Wu, X. Zhang, and J. Wang, Full-life dynamic identification of wear state based on on-line wear debris image features, Mech. Syst. Signal Process, vol.42, pp.404-414, 2014.

I. El-thalji and E. Jantunen, Dynamic modelling of wear evolution in rolling bearings, Tribol. Int, vol.84, pp.90-99, 2015.

J. Zhu, J. M. Yoon, D. He, and E. Bechhoefer, Online particle-contaminated lubrication oil condition monitoring and remaining useful life prediction for wind turbines, Wind Energy, vol.18, pp.1131-1149, 2015.

J. Zhu, D. He, and E. Bechhoefer, Survey of lubrication oil condition monitoring, diagnostics, prognostics techniques and systems, J. Chem. Sci. Technol, vol.2, pp.100-115, 2012.

L. Du and J. Zhe, A high throughput inductive pulse sensor for online oil debris monitoring, Tribol. Int, vol.44, pp.175-179, 2011.

X. Zhu, C. Zhong, and J. Zhe, A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring, Meas. Sci. Technol, vol.28, p.75102, 2017.

L. Du, X. Zhu, Y. Han, and J. Zhe, High Throughput Wear Debris Detection in Lubricants Using a Resonance Frequency Division Multiplexed Sensor, Tribol. Lett, vol.51, pp.453-460, 2013.

H. Zhan, Y. Song, H. Zhao, J. Gu, H. Yang et al., Study of the sensor for on-line lubricating oil debris monitoring, Sens. Transducers, vol.175, pp.214-219, 2014.

Z. Zhong, S. Wang, W. Hong, and M. Tomovic, Aliasing signal separation of oil debris monitoring, Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp.1682-1687, 2016.

C. Li, J. Peng, and M. Liang, Enhancement of the wear particle monitoring capability of oil debris sensors using a maximal overlap discrete wavelet transform with optimal decomposition depth, Sensors, vol.14, pp.6207-6228, 2014.

J. Luo, D. Yu, and M. Liang, Enhancement of oil particle sensor capability via resonance-based signal decomposition and fractional calculus, Measurement, vol.76, pp.240-254, 2015.

D. Wang, W. Guo, and P. W. Tse, An enhanced empirical mode decomposition method for blind component separation of a single-channel vibration signal mixture, J. Vib. Control, vol.22, pp.2603-2618, 2015.

J. H. Mcdermott, The cocktail party problem, Neural Comput, vol.17, pp.1875-1902, 2009.

L. Han, C. W. Li, S. L. Guo, and X. W. Su, Feature extraction method of bearing AE signal based on improved FAST-ICA and wavelet packet energy, Mech. Syst. Signal Process, pp.91-99, 2015.

A. Jourjine, S. Rickard, and O. Yilmaz, Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures, Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.2985-2988, 2000.

O. Yilmaz and S. Rickard, Blind separation of speech mixtures via time-frequency masking. Signal Process, IEEE Trans, vol.52, pp.1830-1847, 2004.

A. Hussain, K. Chellappan, and M. S. Zamratol, Speech enhancement using degenerate unmixing estimation technique and adaptive noise cancellation technique as a post signal processing, Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp.280-285, 2016.

N. Chong, S. Nordholm, T. V. Ba, and I. Murray, Tracking and separation of multiple moving speech sources via cardinality balanced multi-target multi Bernoulli (CBMeMBer) filter and time frequency masking, Proceedings of the 2016 International Conference on Control, Automation and Information Sciences (ICCAIS), pp.88-93, 2016.

W. Hong, S. Wang, H. Liu, M. M. Tomovic, and Z. Chao, A hybrid method based on Band Pass Filter and Correlation Algorithm to improve debris sensor capacity, Mech. Syst. Signal Process, vol.82, pp.1-12, 2016.

E. Hoffmann, D. Kolossa, and R. Orglmeister, A batch algorithm for blind source separation of acoustic signals using ICA and time-frequency masking, Proceedings of the International Conference on Independent Component Analysis and Signal Separation, pp.480-487, 2007.

S. S. Zaidi, M. M. Ali, F. Aftab, Y. Shahid, and M. Khurram, Name spotting over low signal-to-noise ratio (SNR) using Blind Source Separation and Connectionist Temporal Classification, Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), pp.320-325, 2017.