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highlights 

 Dependencies among degradation processes in MSPS are modeled by PDMP. 

 A comparative study of MC simulation and FV scheme for reliability 

assessment of MSPS is conducted. 

 Two case studies regarding a real industrial system are considered. 

 Guidelines for the selection of the two approaches are provided. 
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Abstract – Multi-state physics systems (MSPS) modeling framework incorporates 

multi-state models that describes the systems degradation/maintenance process 

through transitions among discrete states, and physics-based models that describe the 

degradation process within the states by using physics knowledge and equations. In 

previous works, piecewise-deterministic Markov process (PDMP) has been adopted to 

treat the system dynamics and the degradation dependence in MSPS. For reliability 

assessment, Monte Carlo simulation and finite-volume method are two widely used 

numerical approaches to solve PDMP. In the present work, a comparative study 

considering different evaluation criteria of the two approaches is conducted on two 

representative case studies. We provide clear guidelines for the selection of the two 

approaches. 

 

 

Keywords: multi-state model, physics-based model, dependent degradation processes, 

piecewise-deterministic Markov process, Monte Carlo simulation method, 

finite-volume scheme. 
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Acronyms 

 

PBMs   Physics-based models 

MSMs   Multi-state models 

PDMP   Piecewise-deterministic Markov process 

MC    Monte Carlo 

FV    Finite-volume  

RHRS    Residual heat removal system  

KB    Kilobytes 
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Notations 

 

𝑳   Group of degradation processes modeled by PBMs 

𝑲   Group of degradation processes modeled by MSMs 

𝑋𝐿𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)  Time-dependent continuous variables of degradation process 𝐿𝑚 

𝑓𝐿𝑚
⃗⃗ ⃗⃗ ⃗⃗    Physics equations 

𝜃𝐿𝑚   Parameters in 𝑓𝐿𝑚
⃗⃗ ⃗⃗ ⃗⃗  

𝑥𝐿𝑚⃗⃗⃗⃗ ⃗⃗  ⃗
∗
  Degradation threshold 

𝑌𝐾𝑛(𝑡)  State variable of degradation process 𝐾𝑛 

𝜆𝑖   Transition rate of 𝑌𝐾𝑛(𝑡) 

𝜃𝐾𝑛   Parameters in 𝜆𝑖 

𝑆𝐾𝑛   Finite state set of degradation process 𝐾𝑛 

𝑍 (𝑡)  Degradation state of the system 

𝜽𝑲    Parameters used in 𝑲 

𝜆𝑖 (𝑗 |𝑋 ⃗⃗  ⃗(𝑡), 𝜽𝑲) Transition rate from state 𝑖  to 𝑗  

𝜽𝑳   Parameters used in 𝑳 

𝑓𝐿
𝑌⃗ (𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

(𝑋 ⃗⃗  ⃗(𝑡), 𝑡 | 𝜽𝑳) Deterministic physics equations in 𝑳 

 

 

1. INTRODUCTION 

Most systems degrade over time and experience intermediate degradation states 

before complete failure. For some highly reliable components/systems (e.g. pumps 

and valves in nuclear power plants), their degradation and/or failure data are often 

limited. In this situation, multi-state physics systems (MSPS) modeling framework [1] 

which incorporates multi-state models (MSMs) [2-7] and physics-based models 

(PBMs) [8-11] can be applied. A MSM describes the degradation process in a discrete 

way, supported by material science knowledge [1], degradation and/or failure data [3] 

from historical field collection or degradation tests. Giorgio et al. [3] modeled the 

degradation process by a Markov model in which the transition probabilities between 

unit states depend on both the current age and the current degradation level. 

Chryssaphinou et al. [2] employed discrete-time semi-Markov chains to model 

component degradation processes and used the vector of paired processes of the 
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semi-Markov chain and the corresponding backward recurrence time process to 

describe the behavior of the whole system. Li and Pham [4] developed a generalized 

multi-state degraded system reliability model subject to multiple competing failure 

processes, including two degradation processes, and random shocks. Moghaddass and 

Zuo [7] employed nonhomogeneous continuous-time semi-Markov processes to 

model degradation and developed supervised parametric and nonparametric 

estimation methods to estimate the maximum likelihood estimators of the main 

characteristics of the model. Please refer to [5] for other studies on MSMs. A PBM 

aims at developing an integrated mechanistic description of the component/system life 

consistent with the underlying real degradation mechanisms (e.g. wear, corrosion, 

cracking, etc.) by using physics knowledge and equations [12]. Daigle and Goebel [8] 

developed PBMs for the degradation processes of the pneumatic valves based on mass 

and energy balances and the underlying damage mechanisms. Daigle and Goebel [9] 

employed PBMs to model impeller wear and bearing wear of centrifugal pumps. 

Keedy and Feng [10] modeled fatigue crack growth of the stents due to cyclic stresses 

by using the mechanics-based approach. Reggiani et al. [11] built a PBM for 

hot-carrier stress degradation based on the linear drain current. 

In reality, systems are often subject to multiple degradation processes. These 

degradation processes can be dependent under certain circumstances, e.g. when the 

degradation dynamics of some components depend on the degradation state of other 

components [13], or the various degradation processes share the same influencing 

factors [14]. This renders the system reliability analysis and prediction a challenging 

problem. Peng et al. [15] considered two dependent failure processes modeled as 

stochastic processes. Wang and Pham [16] applied time-varying copulas for 

describing the dependence between the degradation processes modeled by statistical 

distributions. Yang et al. [17] modeled the components dependence through the joint 

distribution of failure time. Straub [18] used a dynamic Bayesian network to represent 

the dependence between degradation processes modeled by multi-state models. The 

dependence is handled in different ways according to the types of degradation models 

involved. However, none of the previous methods can treat the degradation 

dependency in a system whose degradation processes are modeled by PBMs and 

MSMs.  

Piecewise-deterministic Markov process (PDMP) can be employed to integrate 

PBMs and MSMs for dealing with the degradation dependence among different 

components, as shown in our previous preliminary study [19]. The PDMP, firstly 

introduced by Davis in [20, 21], and further studied by Jacobsen [22] and 

Cocozza-Thivent [23] is a family of Markov processes involving deterministic 

evolution punctuated by random jumps. It is a general model and includes many other 

models (e.g. semi-Markov process, Markov process, etc.) as special cases. 

Marseguerra and Zio [24] applied PDMP approach for dynamic reliability assessment 

of a heated hold-up tank system, whereas Chiquet et al. [25] used PDMP to model 

fatigue crack in a structural component. Zhang et al. [26] applied PDMP to an 

offshore oil production system and demonstrated its high modeling ability. However, 

due to the complex behavior of PDMP, analytical solutions are difficult to obtain [24].  
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The Monte Carlo (MC) simulation method and finite-volume (FV) approach are 

two widely used approaches for solving PDMP models to evaluate reliability 

quantities. Zhang et al. [27] have used the MC simulation method to assess the safety 

and production availability of an offshore oil production system. An FV scheme is a 

feasible alternative for solving PDMP by discretizing its continuous variable space 

and the time space. It can achieve the results comparable to the MC simulation 

method, but in significantly shorter computing times in certain cases. Lair et al. [28] 

have developed a FV scheme to optimize the preventive maintenance of 

air-conditioning systems used in trains. Cocozza-Thivent et al. [29] have proposed an 

explicit FV scheme for dynamic reliability assessment. An implicit FV scheme has 

been proposed by Eymard et al. [30] to assess the marginal distribution of a process 

describing the time evolution of a hybrid system. Lin et al. [31] have extended a FV 

scheme to quantify the fuzzy system reliability considering epistemic uncertainty and 

degradation dependency for low dimensional problems with simple equations 

describing the deterministic evolution of PBMs. Eymard et al. [32] applied FV 

scheme for sensitivity analysis in dynamic reliability models. Based upon previous 

published works, we summarize the characteristics of both evaluation methods as 

follows: MC simulation method is readily to be implemented, however, requires 

considerable amount of computing time; FV scheme can be more efficient in low 

dimension problems, but is relatively difficult to implement and deploy. To the 

knowledge of the authors, there is no clear conclusion about when to utilize which 

method. Therefore, a systematic comparative study considering different evaluation 

criteria is necessary to provide useful guidelines for the researchers and the 

practitioners.   

The major difference between present work and the previous works [19, 33] is that 

this is a systematic comparative study on the methods for reliability assessment of 

multi-state physics systems (MSPSs) considering different evaluation criteria. This 

type of study is useful for the following research works as well as for practice purpose. 

To the knowledge of the authors, it has not been done in the literature and there is no 

clear conclusion about which method should be applied when encountering different 

system types (e.g. large/small sized, with complex/simple degradation equations). The 

methodological contribution of this work is mainly on the aspect of method selection: 

we provide clear guidelines for choosing the two methods, considering several 

evaluation criteria, i.e. accuracy, computation time, memory consumption, efficiency, 

scope of application and ease of implementation. 

The reminder of this article is organized as follows. Section 2 introduces the 

PDMP modeling for MSPS reliability assessment. The procedures of MC simulation 

method and FV scheme to solve the model are presented in Section 3. Section 4 

presents the evaluation criteria, the case study and the comparison of the two methods. 

Section 5 concludes the work. 

 

2. PDMP MODELING OF MSPS RELIABILITY ASSESSMENT  

 

2.1 Assumptions of system and degradation models 
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We consider a multi-component system. For modeling degradation processes, 

different types of degradation models can be included: PBMs, probabilistic & 

statistical models, MSM models and continuous degradation models. In this work, we 

combine PBMs and MSMs under a general setting with no constraint on system 

topology (e.g. series, parallel, series-parallel, etc.). A component may have multiple 

degradation processes and each may be modeled by a PBM or a MSM. Therefore, a 

component may involve multiple PBMs and multiple MSMs. Note that the 

degradation processes in one component or different components are possibly 

dependent and the system topology does not affect the results shown later. We classify 

them into two groups: (1) 𝑳 = *𝐿1, 𝐿2, … , 𝐿𝑀+ modeled by M PBMs; (2) 𝑲 = *𝐾1, 

𝐾2 , … , 𝐾𝑁+  modeled by N MSMs, where 𝐿𝑚, 𝑚 = 1, 2, … ,𝑀  and 𝐾𝑛, 𝑛 =

1, 2, … , 𝑁 are the indexes of the degradation processes. We follow the definitions of 

PBMs and MSMs given in [33].  

 

2.1.1 PBMs [33] 

For 𝐿𝑚 ∈ 𝑳, its degradation level is denoted by vector 𝑋𝐿𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡), which contains 

𝑑𝐿𝑚  continuous variables involving degradation variables such as crack length [10] 

and wear area [9], and physical variables such as velocity and force [8]. Its evolution 

in time is characterized by a system of first-order differential equations 𝑋𝐿𝑚
̇⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) =

𝑓𝐿𝑚
⃗⃗ ⃗⃗ ⃗⃗ (𝑋𝐿𝑚

⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡), 𝑡 | 𝜃𝐿𝑚), i.e. physics equations, where 𝜃𝐿𝑚 reprsents influencing factors 

and the related coefficients. Note that higher-order differential equations can be 

converted into a system of large number of first-order differential equations by 

introducing extra variables. 𝐿𝑚 is regarded as failure as long as one degradation 

variable 𝑥𝐿𝑚
𝑖 (𝑡) in 𝑋𝐿𝑚

⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) exceeds its predefined failure threshold 𝑥𝐿𝑚
𝑖 ∗

. 

 

2.1.2 MSMs [33] 

For 𝐾𝑛 ∈ 𝑲, its degradation level is denoted by 𝑌𝐾𝑛(𝑡), taking values from a 

finite state set denoted by 𝑆𝐾𝑛 = *0, 1, … , 𝑑𝐾𝑛+, where 𝑑𝐾𝑛 is the perfect functioning 

state and 0 is the complete failure state. Markov processes [3] are employed which 

are widely used in practice as MSMs. The transition rates 𝜆𝑖(𝑗 | 𝜃𝐾𝑛), ∀ 𝑖, 𝑗 ∈ 𝑆𝐾𝑛 , 𝑖 >

𝑗 characterize the transition probabilities from 𝑖 to state 𝑗 caused by degradation, 

where 𝜃𝐾𝑛  represents the influencing factors and the related coefficients. 𝐾𝑛  is 

considered as failure when 𝑌𝐾𝑛(𝑡) reaches the state 0. 
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In our current model, there is no assumption about the dependence between 𝜃𝐾𝑛 

and 𝜃𝐿𝑚, since they belongs to different degradation models. However, dependency 

can be considered. For example, if some influencing factors, such as temperature and 

humidity, are considered in both the PBM and the MSM, then, 𝜃𝐾𝑛 and 𝜃𝐿𝑚  contain 

same factors. Furthermore, 𝜆𝑖(𝑗 | 𝜃𝐾𝑛) can be a function of time, if the time factor 

belongs to 𝜃𝐾𝑛 

 

2.2 PDMP modeling [19] 

The dependence between degradation processes may exist within each group and 

between the two groups (e,g, the evolution of 𝑋𝐿𝑚
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) may be influenced by the 

degradation states of 𝑋𝑚′⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡),𝑚 ≠ 𝑚′  and 𝑌𝐾𝑛(𝑡); the transition rates of 𝑌𝐾𝑛(𝑡) 

may be influenced by the degradation states of 𝑌𝐾
𝑛′
(𝑡), 𝑛 ≠ 𝑛′ and 𝑋𝐿𝑚

⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)). An 

illustration of a system with two dependent degradation processes is shown in Fig. 1, 

where the further degraded states of 𝐾1(𝐿1) lead to higher degradation rates of 

𝐿1(higher transition rates of 𝐾1 to step to further degraded states).  

 

 

 

Fig. 1. An illustrative example of a system with two dependent degradation 

processes. Top Figure: degradation process of 𝐿1; Bottom Figure: degradation 

process of 𝐾1. 
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In this particular case, the degradation rate of 𝑋𝐿𝑙
⃗⃗ ⃗⃗⃗⃗ (𝑡) changes at the same time when 

𝑌𝐾𝑙(𝑡) changes. However, this does not necessarily happen in all cases since the 

degradation rate of 𝑋𝐿𝑙
⃗⃗ ⃗⃗⃗⃗ (𝑡) may also depend on other influencing factors and the 

related coefficients in the physics equations. 

PDMP can be employed to model this type of interdependence [19] as shown in 

eqs. (2) and (3). Let 

𝑍 (𝑡) =

(

 
 
 
 (

𝑋𝐿𝑙
⃗⃗ ⃗⃗⃗⃗ (𝑡)

⋮

𝑋𝐿𝑀
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)

) = 𝑋 ⃗⃗  ⃗(𝑡)

(

𝑌𝐾𝑙(𝑡)

⋮
𝑌𝐾𝑁(𝑡)

) = 𝑌 ⃗⃗  ⃗(𝑡)

)

 
 
 
 

∈ 𝑬 = ℝ𝑑𝐿 × 𝑺           (1) 

denote the overall degradation processes of the system where 𝑬  is the space 

combining ℝ𝑑𝐿  (𝑑𝐿 = ∑ 𝑑𝐿𝑚
𝑀
𝑚=1 ) and 𝑺. The evolution of 𝑍 (𝑡) involves two parts:  

(1) the stochastic behavior of 𝑌⃗ (𝑡) , which is governed by the transition rates 

depending on the degradation states of all the degradation processes in system as 

follows: 

𝑙𝑖𝑚∆𝑡 → 0 𝑃(𝑌⃗ (𝑡 + ∆𝑡) = 𝑗  | 𝑋 ⃗⃗  ⃗(𝑡), 𝑌⃗ (𝑡) = 𝑖 , 𝜽𝑲 = ⋃ 𝜽𝐾𝑛
𝑁
𝑛=1 ) /∆𝑡  

= 𝜆𝑖 (𝑗  | 𝑋 ⃗⃗  ⃗(𝑡), 𝜽𝑲), ∀ 𝑡 ≥ 0, 𝑖 , 𝑗 ∈ 𝑺, 𝑖 ≠ 𝑗             (2) 

(2) the deterministic behavior of 𝑋 ⃗⃗  ⃗(𝑡) between two consecutive jumps of 𝑌⃗ (𝑡), 

which is described by the deterministic physic equations depending on the 

degradation states of all the degradation processes in system as follows: 

𝑋̇ (𝑡) = (

𝑋𝐿𝑙
̇⃗⃗ ⃗⃗⃗⃗  (𝑡)

⋮

𝑋𝐿𝑀
̇⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡)

) =

(

 
𝑓𝐿𝑙

𝑌⃗ (𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
(𝑋 ⃗⃗  ⃗(𝑡), 𝑡 | 𝜽𝐿𝑙)

⋮

𝑓𝐿𝑀
𝑌⃗ (𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

(𝑋 ⃗⃗  ⃗(𝑡), 𝑡 | 𝜽𝐿𝑀))

  

= 𝑓𝐿
𝑌⃗ (𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

(𝑋 ⃗⃗  ⃗(𝑡), 𝑡 | 𝜽𝑳 = ⋃ 𝜽𝐿𝑚
𝑀
𝑚=1  )               (3) 

Let 𝑇𝑘 denote the 𝑘-th transition time of the process 𝑌⃗ (𝑡). {𝑍𝑘⃗⃗⃗⃗ , 𝑇𝑘}𝑘≥0 is, then, 

a Markov renewal process [23] defined on the space 𝑬 × ℝ+, since the probability 

that the whole system will step to state 𝑗  from state 𝑖 , 𝑖 , 𝑗  ∈  𝑬, 𝑖 ≠ 𝑗  in the time 

interval ,𝑇𝑛, 𝑇𝑛 + ∆𝑡-, given {𝑍𝑘⃗⃗⃗⃗ , 𝑇𝑘}𝑘≤𝑛 is: 

𝑃 0𝑍𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑗 , 𝑇𝑛+1 ∈ ,𝑇𝑛, 𝑇𝑛 + ∆𝑡- | {𝑍𝑘⃗⃗⃗⃗ ,  𝑇𝑘}𝑘≤𝑛−1, {𝑍𝑛
⃗⃗ ⃗⃗ = 𝑖 ,  𝑇𝑛}1 
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= 𝑃[𝑍𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑗 , 𝑇𝑛+1 ∈ ,𝑇𝑛, 𝑇𝑛 + ∆𝑡- | 𝑍𝑛⃗⃗ ⃗⃗ = 𝑖 ]  

∀ 𝑛 ≥ 0, 𝑖 , 𝑗  ∈  𝑬, 𝑖 ≠ 𝑗                       (4) 

 

Let 𝓕 denote the predefined space of the failure states of 𝑍 (𝑡): then, the system 

reliability at time 𝑡 is defined as follows: 

𝑅(𝑡) = 𝑃,𝑍 (𝑠) ∉ 𝓕, ∀𝑠 ≤ 𝑡-                      (5) 

To consider a general setting, 𝓕 , is dependent on system topology which is 

problem-specific and can be determined by using reliability analysis tools such as 

fault tree analysis. 

 

 

3. METHODS FOR RELIABILITY ASSESSMENT 

 

3.1 MC simulation method for solving PDMP 

Analytically solving the PDMP is a difficult task due to the complexity in the 

system behavior [24], with stochastic state transitions occurring in the components 

modeled by MSMs and time-dependent evolutions of the characteristic variables in 

the components modeled by PBMs. MC simulation method is widely used to solve 

PDMP in practice, which is readily to be implemented. Here, we employ the MC 

simulation method proposed in [33] for system reliability estimation. Appendix A 

contains a detailed description of the procedures of the MC simulation method. 

 

3.2 FV scheme for solving PDMP 

The MC simulation method is conceptually easy to apply and without particular 

restrictions on the dimension of PDMP. On the contrary, it can be quite 

time-consuming because of the repetition of many trials in order to get a satisfactory 

accuracy in the system reliability estimate.  

An FV scheme discretizing the state space of the continuous variables and the time 

space of PDMP is an alternative that in certain cases can lead to results comparable to 

the MC simulation method, but in significantly shorter computing times. Here, we 

employ an explicit FV scheme for system reliability estimation [29]. Appendix B 

contains a detailed description of the FV method. 

  

4. Comparative Study 

4.1. Evaluation criteria 

The evaluation criteria for the comparative study are accuracy, computation time, 

memory consumption, scope of application and ease of implementation. The first 

three attributes are quantitative and the rests are qualitative. 

To compute accuracy, we use the results obtained by the MC simulation method 

with 105 trials as reference values 𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and compute the relative change of 
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the results 𝑥 obtained by another method (i.e. MC simulation method with different 

trials or FV scheme): 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑕𝑎𝑛𝑔𝑒(𝑥, 𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) = (𝑥 − 𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)/

𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, where 𝑥 is the obtained system reliability. 

The efficiency is also an important measure of performance. A method is more 

efficient if it can produce results comparable with the other, but with less computation 

time (here measured in seconds).  

The memory consumption refers to the amount of digital information stored in the 

computer during the calculation and is measured in kilobytes (KB). 

For the scope of application, we consider two case studies: one with high 

dimension and the other with low dimension, since the two methods mainly differ in 

their capacity of treating different dimensions of the problem. 

The ease of implementation describes how easy it is to implement a method in 

practice.  

  

4.2. Numeric experiment design 

All the numerical experiments are carried out in MATLAB on a PC with an Intel 

Core 2 Duo CPU at 3.06 GHz and a RAM of 3.07 GB.  

 We consider MC simulations with 103 , 104  and 105  trials (for ease of 

reference, hereafter named MC1, MC2 and MC3, respectively). The parameters of the 

FV scheme are problem-dependent. Their tuning can be achieved by gradually 

decreasing the space step and the time step. To compare the two methods, the 

parameter setting of FV scheme is first assigned such that it can lead to similar results 

as MC3, which gives the most accurate results that are used for reference. Then, we 

consider several parameter settings around it.  

 

4.3. Test cases and results 

We consider an important subsystem of a residual heat removal system of a 

nuclear power plant [37], consisting of a pneumatic valve and a centrifugal pump, 

which are used in conjunction in a variety of domains for fluid delivery [8, 38]. The 

degradation model of the pump is the one originally considered in [19] while that of 

the valve is the physics-based model presented in [8]. Dependence is considered, as a 

result of discussions with experts: the degradation of the pump can lead it to vibrate 

[38], which will, in turn, cause the vibration of the valve and, therefore, aggravate the 

degradation process of the latter [39]. 

The degradation process of the centrifugal pump is modeled by a continuous-time 

homogeneous Markov chain with constant transition rates as shown in Fig. 2: 

 

 

 

Fig. 2. Degradation process of the pump [19]. 

 

The perfect functioning state is denoted with the label „3‟ and „0‟ is the label of the 

3 2 1 0
λ32 λ21 λ10
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complete failure state. The vibration of the pump caused by degradation is classified 

into two levels: „smooth‟ and „rough‟ [40], corresponding to the degradation states „2‟ 

and „1‟, respectively. Let 𝑌𝑝(𝑡) denote the degradation state of the pump at time 𝑡 

and 𝑺𝑝 = *0, 1, 2, 3+ denote the degradation states set. The values of the degradation 

transition rates are presented in Table I. 

 

Table I Values of the degradation transition rates of the pump 

 

Parameter  Value 

𝜆32 6.00e-3 /s 

𝜆21 6.00e-3 /s 

𝜆10 6.00e-3 /s 

 

The pneumatic valve refers to a normally-closed and gas-actuated valve with a 

linear cylinder actuator, which has been studied in [8, 41] and [42] by physics-based 

modeling. A simplified scheme of the valve is shown in Fig. 3. 

 

 

 

Fig. 3. Simplified scheme of the pneumatic valve [41]. 

  

Two case studies considering two different degradation mechanisms of the valve 

will be carried out in the following section. 

 

4.3.1. Case 1 

A common degradation mechanism of the valve is the internal leakage from the 

seal surrounding the piston [42]. Owing to this, the pneumatic gas can flow between 

the two chambers therefore influencing the response time and behavior of the valve. 

The degradation variable of the valve is the equivalent orifice area of the internal 

leakage of the piston, denoted by 𝐿(𝑡), and the degradation process of the valve at 

Return Spring

Piston

Bottom chamberBottom 

pneumatic port

Top chamber

Top

pneumatic port

Fluid 
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time 𝑡 is described by the following vector: 

𝑋𝑣⃗⃗⃗⃗ (𝑡) =  

(

 
 
 

𝐿(𝑡)

𝑥(𝑡)
𝑣(𝑡)
𝑚𝑡(𝑡)
𝑚𝑏(𝑡)
𝑡 )

 
 
 

                          (6) 

where 𝑥(𝑡) is the position of the valve, 𝑣(𝑡) is the velocity of the valve, 𝑚𝑡(𝑡) is 

the mass of the gas in the top chamber, 𝑚𝑏(𝑡) is the mass of the gas in the bottom 

chamber and 𝑡 is the running time of the valve. The derivatives of these variables are 

represented by:  

𝑋𝑣̇
⃗⃗⃗⃗ (𝑡) =  

(

 
 
 

𝐿̇(𝑡)

𝑣(𝑡)
𝑎(𝑡)
𝑓𝑡(𝑡)
𝑓𝑏(𝑡)
1 )

 
 
 

                          (7) 

where 𝑎(𝑡) is the valve acceleration, 𝑓𝑡(𝑡) and 𝑓𝑏(𝑡) are the mass flows going into 

the top and bottom chambers, respectively. The details of the physic functions 

governing the evolutions of the above variables are as follows: 

𝐿̇(𝑡) = 𝑤𝑟𝑣(𝑡)2                          (8) 

where 𝑤 is the wear coefficient, 

𝑎(𝑡) =
1

𝑚
,(𝑝𝑏(𝑡) − 𝑝𝑡(𝑡)) .𝐴𝑝 − 𝐿(𝑡)/ − 𝑚𝑔 + 

−𝑘(𝑥(𝑡) + 𝑥0) − 𝑟𝑣(𝑡) + 𝐹𝑐(𝑥(𝑡))-               (9) 

where 

𝑝𝑏(𝑡) =
𝑚𝑏(𝑡)𝑅𝑔𝑇

𝑉𝑏𝑘+≦𝑝𝑥(𝑡)
                         (10) 

is the gas pressure on the bottom of the piston, 

    𝑝𝑡(𝑡) =
𝑚𝑡(𝑡)𝑅𝑔𝑇

𝑉𝑡𝑘+≦𝑝(𝐿𝑠−𝑥(𝑡))
                       (11) 

is the gas pressure on the top of the piston, 

𝐹𝑐(𝑥(𝑡)) = {

𝑘𝑐(−𝑥(𝑡)),                𝑖𝑓 𝑥(𝑡) < 0            

 0,                                 𝑖𝑓 0 ≤ 𝑥(𝑡) ≤ 𝐿𝑠  

−𝑘𝑐(𝑥(𝑡) − 𝐿𝑠),       𝑖𝑓 𝑥(𝑡) > 𝐿𝑠           

           (12) 

is the contact force, 

𝑓𝑡(𝑡) = 𝑓𝑔(𝑢𝑡(𝑡), 𝑝𝑡(𝑡), 𝐴𝑠) + 𝑓𝑔(𝑝𝑏(𝑡), 𝑝𝑡(𝑡), 𝐿(𝑡))          (13) 

𝑓𝑏(𝑡) = 𝑓𝑔(𝑢𝑏(𝑡), 𝑝𝑏(𝑡), 𝐴𝑠) + 𝑓𝑔(𝑝𝑡(𝑡), 𝑝𝑏(𝑡), 𝐿(𝑡))          (14) 

where 𝑢𝑡(𝑡) and 𝑢𝑏(𝑡) are the pressures on the top and bottom pneumatic ports, 

respectively, alternating between 𝑃𝑠𝑢𝑝  and 𝑃𝑎𝑡𝑚  depending on the command 

(opening command: 𝑢𝑡(𝑡) = 𝑃𝑎𝑡𝑚  and 𝑢𝑏(𝑡) = 𝑃𝑠𝑢𝑝 ; closing command: 𝑢𝑡(𝑡) =

𝑃𝑠𝑢𝑝 and 𝑢𝑏(𝑡) = 𝑃𝑎𝑡𝑚), and 𝑓𝑔 defines the gas flow through an orifice as follows: 
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𝑓𝑔(𝑝1, 𝑝2, 𝐴) =

{
 
 

 
 
𝜀𝑃𝐶𝑠𝐴√

𝛾

𝑧𝑅𝑔𝑇
(
2

𝛾+1
)
𝛾+𝑙

𝛾−𝑙 ,                          𝑖𝑓 𝛿 ≤ (
2

𝛾+1
)

𝛾

𝛾−𝑙  

𝜀𝑃𝐶𝑠𝐴√
𝛾

𝑧𝑅𝑔𝑇
(
2

𝛾−1
)(𝛿

𝑚

𝛾 − 𝛿
𝛾+𝑙

𝛾 ) ,         𝑖𝑓 𝛿 > (
2

𝛾+1
)

𝛾

𝛾−𝑙   

    (15) 

where  {

𝑃 = max (𝑝1, 𝑝2)  

𝛿 =
min (𝑝𝑙,𝑝𝑚)

max (𝑝𝑙,𝑝𝑚)
        

𝜀 = 𝑠𝑔𝑛(𝑝1 − 𝑝2)

.                        

The parameters definitions and numerical values related to the internal leakage 

degradation are presented in Table II below. 

 

Table II Parameter Definitions and Values of Internal Leakage variables [8] 

Parameter – Definition Value 

𝑔 – acceleration due to gravity 9.8 m/s 

𝑃𝑠𝑢𝑝 – supply pressure 5.27e6 Pa 

𝑃𝑎𝑡𝑚 – atmospheric pressure 1.01e5 Pa 

𝑚 – mass of the moving parts of the valve 50 kg 

𝑟 – coefficient of kinetic friction 6.00e3 Ns/m 

𝑘 – spring constant 4.80e4 N/s 

𝑘𝑐 – large spring constant associated with the flexible seals 1.00e8 N/s 

𝑥0 – amount of spring compression when the valve is closed 0.254 m 

𝐿𝑠 – fully open position of the valve 0.1 m 

𝐴𝑝 – surface area of the piston 8.10e-3 m
2
 

 𝑡0 – minimum gas volume of the top chamber 8.11e-4 m
3
 

 𝑏0 – minimum gas volume of the bottom chamber 8.11e-4 m
3
 

𝑅𝑔 – gas constant for the pneumatic gas 296 J/K/kg 

𝑇 – ideal gas temperature 293 K 

𝛾 – ration of specific heats 1.4 

𝑧 – gas compressibility factor 1 

𝐴𝑠 – orifice area of the pneumatic port 1.00e-5 m
2
 

𝑤 – wear coefficient 6e-9 m/N 

𝐶𝑠 – flow coefficient 0.1 

 

At the initial stage, the valve is set to the fully closed position with the values:  

𝑋𝑣⃗⃗⃗⃗ (0) =  

(

 
 
 
 

𝐿(0)
0
0

𝑃𝑠𝑢𝑝(𝐿𝑠𝐴𝑝+ 𝑡0)

𝑅𝑔𝑇

𝑃𝑎𝑡𝑚 𝑏0

𝑅𝑔𝑇

0 )

 
 
 
 

                       (16) 

The threshold 𝐿∗ for the internal leakage of the piston 𝐿(𝑡) is defined as the value 
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above which (𝐿(0) > 𝐿∗) the valve cannot reach the fully open position within the 15s 

time limit after an opening command is executed at time 𝑡 = 0𝑠. The size of the 

internal leakage is assumed to be constant during the opening procedure (𝐿̇(𝑡) = 0,

0 ≤ 𝑡 ≤ 15) [42] to obtain a conservative threshold of 𝐿∗ = 3.20𝑒 − 6 𝑚2 in this 

case. The behavior of the valve within 15s with different values of 𝐿(0) is shown in 

Fig. 4.  

 

 

 

Fig. 4. Valve position for different sizes of the internal leakage. 

 

4.3.1.1.PDMP for MSPS considering dependence 

The degradation processes of the whole system are modeled by PDMP as follows:  

𝑍 (𝑡) = (
𝑋𝑣⃗⃗⃗⃗ (𝑡)

𝑌𝑝(𝑡)
) =

(

 
 
 
 

𝐿(𝑡)

𝑥(𝑡)
𝑣(𝑡)
𝑚𝑡(𝑡)
𝑚𝑏(𝑡)
𝑡

𝑌𝑝(𝑡) )

 
 
 
 

 ∈  ℝ6 × 𝑺𝑝               (17) 

and  

𝑍̇ (𝑡) = (𝑋𝑣̇
⃗⃗⃗⃗ (𝑡)

0
) =

(

 
 
 
 

𝐿′̇(𝑡, 𝑌𝑝(𝑡))

𝑣(𝑡)
𝑎(𝑡)
𝑓𝑡(𝑡)
𝑓𝑏(𝑡)
1
0 )

 
 
 
 

                    (18) 

where 𝐿′̇(𝑡, 𝑌𝑝(𝑡))  is the derivative of the internal leakage of the valve, with 
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consideration of the degradation dependence between the valve and the pump whereas 

the development of the internal leakage of the valve is dependent on the degradation 

state of the pump, 

𝐿′̇ .𝑡, 𝑌𝑝(𝑡)/ = 𝑤(1 + 𝛽𝑌𝑝(𝑡))𝑟𝑣(𝑡)
2                (19) 

where 𝛽𝑌𝑝(𝑡) is the relative increment of the developing rate of the internal leakage 

caused by the vibration of the pump (if we ignore the degradation dependence, then 

𝛽𝑌𝑝(𝑡) = 0). For illustrative purposes, we assume that 𝛽3 = 𝛽0 = 0, 𝛽2 = 10% and 

𝛽1 = 20% . The times between two consequent jumps of PDMP follow the 

exponential distribution with constant degradation transition rates of the pump. The 

space of the failure states of 𝑍 (𝑡) is 𝓕 = ℝ6 × *0+ ∪ ,𝐿∗, +∞) × ℝ5 × 𝑺𝑝.  

 

4.3.1.2. Results and analysis 

Due to the large dimension of the PDMP and the complex formulation of the 

physic equations, the MC simulation method is adopted to solve the model. 

The initial state of the system is as follows: 

𝑍′⃗⃗  ⃗ = (
𝑋𝑣⃗⃗⃗⃗ (0)

𝑌𝑝(0)
) =

(

 
 
 
 
 

𝐿(0) = 0
0
0

𝑃𝑠𝑢𝑝(𝐿𝑠𝐴𝑝+ 𝑡0)

𝑅𝑔𝑇

𝑃𝑎𝑡𝑚 𝑏0

𝑅𝑔𝑇

0
3 )

 
 
 
 
 

                     (20) 

which means that the two components are both in perfect state and the valve is in the 

fully closed position. The command of the valve is a 30s-periodic-signal and the valve 

is commanded to open in the first half-period and to close in the second half. The 

pump is functioning until it reaches the failure state „0‟. 

MC1, MC2 and MC3 are applied for the system reliability estimation over a time 

horizon of 𝑇𝑚𝑖𝑠𝑠 = 700 𝑠. The results are shown in Fig. 5, with the sample variances 

shown in Fig. 6. In order to appreciate the differences in the curves plotted in Fig. 5, 

the results between 460 s and 560 s are presented in Fig. 7. 
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Fig. 5. System reliability obtained by MC1, MC2 and MC3. 

 

 
Fig. 6. Sample variances of system reliability obtained by MC1, MC2 and MC3. 
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Fig. 7. System reliability with common degradation cause and degradation 

dependence obtained by MC1, MC2 and MC3 between 460 s and 560 s. 

 

In Fig. 8, we compare the system reliability with/without dependence, obtained by 

MC3. From the Figure, we can see that before 465.67 s (point A) the two curves 

coincide and the system reliability is equal to the reliability of the pump. After that 

time, valve failures begin to occur in some simulation trials, corresponding to 

realizations in which the pump jumps to state „1‟ very soon and stays there until the 

valve fails. The system reliability, then, experiences three sharp decreases at around 

497.39 s (point B), 526.77 s (point C) and 556.45 s (point D) respectively, and the 

system is definitely failed afterwards. The longest failure time of the valve is at point 

D, corresponding to the situation when the pump stays in the initial state „3‟ from the 

beginning until the failure of the valve. It is seen that neglecting degradation 

dependence might underestimate the system reliability. 
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Fig. 8. System reliability with/without dependence. 

 

4.3.2. Case 2 

In this case study, the external leakage at the actuator connections to the bottom 

pneumatic port due to corrosion and other environmental factors is considered as 

relevant degradation mechanism, [8].  

Let 𝐷𝑏(𝑡) denote the area of the leakage hole at the bottom pneumatic port at 

time t; the development of the leakage size is described by: 

 𝐷𝑏̇(𝑡) = 𝜔𝑏                           (21) 

where 𝜔𝑏 = 1𝑒 − 8 𝑚2/𝑠 is the original wear coefficient. The threshold of the area 

of the leakage hole can be calculated as 𝐷𝑏
∗ = 1.06e − 5 𝑚2 by using the same 

criteria given in Section 4.1. 

 

4.3.2.1. PDMP for MSPS considering degradation dependence 

The degradation processes of the whole system are modeled by PDMP as follows:  

𝑍 (𝑡) = (
𝐷𝑏(𝑡)

𝑌𝑝(𝑡)
*  ∈  ℝ+ × 𝑺𝑝                    (22) 

and  

𝑍̇ (𝑡) = (𝐷𝑏
′̇ (𝑡)

0
* = (

𝜔𝑏(1 + 𝛼𝑌𝑝(𝑡))

0
*                 (23) 

where 𝛼𝑌𝑝(𝑡) is the relative increment of the developing rate of the external leakage 

at the bottom pneumatic port caused by the vibration of the pump at the degradation 

state „2‟ or „1‟ (if we ignore the degradation dependence, then 𝛼𝑌𝑝(𝑡) = 0). We 

assume that 𝛼3 = 𝛼0 = 0 , 𝛼2 = 10%  and 𝛼1 = 20% . The times between two 

consequent jumps of PDMP follow the exponential distribution with constant 

degradation transition rates of the pump. The space of the failure states of 𝑍 (𝑡) is 
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𝓕 = ℝ+ × *0+ ∪ ,𝐷𝑏
∗, +∞) × 𝑺𝑝.  

The initial state of the system is assumed as follows: 

𝑍0⃗⃗⃗⃗ = (
𝐷𝑏(0)

𝑌𝑝(0)
* = .

0
3
/ 

which means that the two components are both in their perfect state. 

 

4.3.2.2.Results and analysis 

MC simulation method and FV scheme are applied for the estimation of the 

system reliability over a time horizon of 𝑇𝑚𝑖𝑠𝑠 = 1000 𝑠. The results obtained by 

MC1, MC2 and MC3 are shown in Fig. 9.  

 

 
 

Fig. 9. System reliability obtained by MC1, MC2 and MC3. 

 

For the FV scheme, the state space ℝ+ of 𝐷𝑏(𝑡) has been divided into an 

admissible mesh ℳ = ⋃ ,𝑛∆𝑥, (𝑛 + 1)∆𝑥,𝑛=0,1,2,…  and the time space ℝ+ has been 

divided into small intervals ℝ+ = ⋃ ,𝑛∆𝑡, (𝑛 + 1)∆𝑡,𝑛=0,1,2,… . The values of space 

step ∆𝑥  and time step ∆𝑡  can influence the accuracy of the results. We have 

considered 7 different parameter settings: (1) FV1: ∆𝑥 = 1𝑒 − 8, ∆𝑡 = 1; (2) FV2: 

∆𝑥 = 5𝑒 − 8, ∆𝑡 = 1 ; (3) FV2a: ∆𝑥 = 10𝑒 − 8, ∆𝑡 = 1 ; (4) FV3: ∆𝑥 = 1𝑒 −

8, ∆𝑡 = 5, (5) FV3a: ∆𝑥 = 1𝑒 − 8, ∆𝑡 = 10, (6) FV4: ∆𝑥 = 5𝑒 − 8, ∆𝑡 = 5 and (7) 

FV5: ∆𝑥 = 10𝑒 − 8, ∆𝑡 = 10. Their results are shown in Fig. 9-12.  

We compare the results obtained by FV1 and MC3 in Fig. 10, where it is shown 

that FV scheme can lead to results comparable to those of the MC simulation method. 

The effect of variations in ∆𝑥 is studied in Fig. 11, where it can be seen that before 

around 730 s (point A) the three curves match. Up to that time, the system reliability 

is equal to the reliability of the pump. After that time, 𝐷𝑏(𝑡)  approaches the 

threshold 𝐷𝑏
∗ and valve failure begins to occur, so that the effect of variations in ∆𝑥 

becomes more distinct since smaller ∆𝑥 leads to more accurate estimation of 𝐷𝑏(𝑡) 
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and, thus, more accurate estimation of the system reliability. The effects of variation 

in ∆𝑡 is studied in Fig. 12, where we can see that the effect of variations in ∆𝑡 is 

visible from the beginning, since ∆𝑡 can influence the estimation of both 𝐷𝑏(𝑡) and 

𝑌𝑝(𝑡) and, thus, influence the estimation of the system reliability from the beginning. 

The joint effect of variations in ∆𝑥 and ∆𝑡 is shown in Fig. 13.  

In general cases, the appropriate value of the space step ∆𝑥 is problem-specific 

and can only be approximated since no analytical expression is available due to the 

complexity of PDMP model. In this work, the approximation method starts at 

assigning an initial value to A and setting a value to the ratio B (>1), by the 

experimenter. The initial value of A is not chosen as small as possible, since it may be 

significantly different from the appropriate value of the space step ∆𝑥. Besides, a 

very large value of the ratio B may make it difficult to find the appropriate value of 

the space step ∆𝑥 if it is around the value of A. According to our experiments, the 

initial value of A can be chosen between 1% and 10% of the failure threshold value 

and the ratio B can be chosen between 2 and 10. Their values are problem-specific 

and can be adjusted with respect to the performance of the approximation method. 

If the difference between the results obtained by setting ∆𝑥 = 𝐴 and those by 

setting ∆𝑥 = 𝐴/𝐵 is negligible (if the absolute relative difference of the two results 

is smaller than r%, e.g. r =1, which is chosen by the experimenter according to the 

accuracy requirement of the problem under study, it can be considered as negligible.), 

then we replace 𝐴 by 𝐴 ⋅ 𝐵 and redo the comparison. This procedure is repeated 

until the difference is not negligible. Then, 𝐴 is assigned to ∆𝑥. On the contrary, if 

the difference between the results obtained by setting ∆𝑥 = 𝐴 and those by setting 

∆𝑥 = 𝐴/𝐵 is not negligible, we replace 𝐴 by 𝐴/𝐵 and redo the comparison. This 

procedure is repeated until the difference is negligible. Then, 𝐴 is assigned to ∆𝑥. 

Usually, the order of magnitude of the value of ∆𝑥 is close to that of the growth rate 

of the continuous degradation variable since the evolution of the continuous 

degradation variable can, then, be well approximated by using grids of size ∆𝑥. In the 

case study, the value of ∆𝑥  in FV1 is chosen as 1𝑒 − 8  by using the above 

described method given that the growth rate of the leak size at the bottom pneumatic 

port 𝜔𝑏 = 1𝑒 − 8 𝑚2/𝑠. 
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Fig. 10. System reliability obtained by FV1 and MC3. 

  
 

Fig. 11. System reliability obtained by FV1, FV2 and FV2a. 
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Fig. 12. System reliability obtained by FV1, FV3 and FV3a. 

 

 

 

Fig. 13. System reliability obtained by FV1, FV4 and FV5. 
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determines the estimated states of all degradation processes. However, the variation in 

∆𝑥 may influence the system reliability estimations after certain time if the system 

failures at early stage are only due to certain degradation processes modeled by 

MSMs, of which the estimated states are independent of ∆𝑥. By properly choosing 

the step sizes, FV scheme can lead to results comparable to those of the MC 

simulation. The average computation time of the two methods shows that the FV 

scheme is more efficient than MC simulation for simple and low dimensional 

problems. However, it should be noted that the memory requirement of the FV 

scheme is much higher than that of MC simulation method and the FV scheme is 

sensitive to the space step and time step. The computational expenses of the MC 

simulation method increase linearly as the number of replications increases and that of 

FV scheme is almost linear with ∆𝑥 ∙ ∆𝑡. 

 

Table III Comparisons of the system reliability results obtained by MC simulation 

method and FV scheme 

 

Methods System 

reliability 

at 1000 s 

Relative 

change 

with 

respect to 

MC3 

Average 

computation 

time (s) 

Memory 

consumption 

(KB) 

MC 

simulation 

method 

MC3 0.0197  1.41 8.17 

MC2 0.0175 11.17% 0.14 8.17 

MC1 0.023 16.75% 0.014 8.17 

FV 

scheme 

FV1 0.0199 1.02% 0.17 33.62 

FV2 0.0237 20.30% 0.042 13.26 

FV2a 0.0253 28.43% 0.021 10.72 

FV3 0.0212 7.61% 0.033 27.22 

FV3a 0.0231 17.26% 0.017 26.41 

FV4 0.0218 10.66% 0.0058 6.86 

FV5 0.0241 22.34% 0.00027 3.51 

 

4.5. Guidelines for the selection of the MC simulation method and FV scheme 

Table IV summarizes the qualitative insights drawn from the comparative studies 

of the two numerical approaches. 

 

Table IV Comparisons of the two numerical approaches 

 MC simulation method FV scheme 

Parameters Number of replications Space step, Time step 

Accuracy Medium High 

Computation time Long Short 

Memory consumption Low High 

Efficiency Low High 

Scope of application Large Small 
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Ease of Implementation Yes Generally no 

 

The MC simulation method requires a number of replications to achieve a desired 

level of accuracy, whereas the FV scheme needs to discretize the time space and state 

space by properly choosing the corresponding step sizes. Due to the discretization, the 

memory consumption of FV scheme is typically larger than that of the MC simulation 

method. The MC simulation method is easy to be implemented by the practitioners 

without restrictions on the dimension of the problem, like for PDMP. In reverse, the 

price to pay is that the MC simulation method can be quite time-consuming. The FV 

scheme is an alternative that appears to be efficient and lead to results comparable to 

those of the MC simulation method with acceptable computing time. However, it is 

unsuited for high-dimensional problems or problems with complex equations 

describing the deterministic evolution, and it is also relatively difficult to implement 

and deploy.  

Given the above observations, the following guidelines for selection may be 

helpful: 

 For high dimensional problems or problems with complex equations 

describing the deterministic evolution, the MC simulation method is preferred. 

 For low dimensional problems or problems with simple equations describing 

the deterministic evolution, the FV scheme is preferred. Note that in some 

cases the high dimensional problem can be decomposed into several low 

dimensional ones mutually independent on each other. Then, the FV schemes 

can be run on low dimensional problems in parallel. 

 

5. CONCLUSIONS 

 

PDMP approach can be employed to model MSPS subject to degradation 

dependence. The significance of the method lies in the possibility that it offers to 

describe the degradation dependence between PBMs, between MSMs and between 

the two types of models. MC simulation method and FV scheme are two widely used 

approaches for the system reliability assessment based on the PDMP. In the present 

work, a comparative study of the two approaches has been carried out to study their 

accuracy, efficiency, memory requirement, scope of application and ease of 

implementation and clear guidelines for their selection have been provided. Results 

show that the MC simulation method is easy to be implemented and has wide 

applicability, since it has no restriction on the dimension of the underlying PDMP 

modeling the degradation processes. The FV scheme, although relatively difficult to 

handle and more demanding in terms of computer memory, is computationally more 

efficient and can lead to results comparable to those of the MC simulation method for 

simple and low dimensional problems. The MC simulation method requires a number 

of replications to achieve a desired level of accuracy, since the accuracy of numerical 

solutions of the ordinary differential equations can be controlled. The FV scheme 

needs to discretize the time space and state space by properly choosing the 

corresponding step sizes. 
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As future research, we plan to study acceleration techniques for the MC 

simulation method, to relieve the computational burden. 
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Appendix A: MC simulation method 

 

To apply the MC simulation method, eq. (4) is written as follows: 

𝑃[𝑍𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ 𝐵, 𝑇𝑛+1 ∈ ,𝑇𝑛, 𝑇𝑛 + ∆𝑡- | 𝑍𝑛⃗⃗ ⃗⃗ = 𝑖 , 𝜽𝑲] 

= ∬ 𝑁(𝑖 , 𝑑𝑧⃗⃗⃗⃗ , 𝑑𝑠 | 𝜽𝑲)

≧∗,0,∆𝑡-

  

∀ 𝑛 ≥ 0, ∆𝑡 ≥ 0, 𝑖 ∈  𝑬, 𝐵 ∈ 𝜀                     (24) 

where 𝜀 is a 𝜎-algebra of 𝑬 [23] and 𝑁(𝑖 , 𝑑𝑧⃗⃗⃗⃗ , 𝑑𝑠 | 𝜽𝑲) is a semi-Markov kernel on 

𝑬 , which verifies that ∬ 𝑁(𝑖 , 𝑑𝑧⃗⃗⃗⃗ , 𝑑𝑠 | 𝜽𝑲) ≤ 1
𝑬∗,0,∆ 𝑡-

, ∀ ∆𝑡 ≥ 0, 𝑖 ∈  𝑬 . It can be 
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further developed as:  

𝑁(𝑖 , 𝑑𝑧⃗⃗⃗⃗ , 𝑑𝑠 | 𝜽𝑲) = 𝑑𝐹𝑖 (𝑠 | 𝜽𝑲)𝛽(𝑖 , 𝑠, 𝑑𝑧⃗⃗⃗⃗  | 𝜽𝑲)             (25) 

where  

𝑑𝐹𝑖 (𝑠 | 𝜽𝑲)                             (26) 

is the probability density function of 𝑇𝑛+1 − 𝑇𝑛 given 𝑍𝑛⃗⃗ ⃗⃗ = 𝑖  and  

𝛽(𝑖 , 𝑠, 𝑑𝑧⃗⃗⃗⃗  | 𝜽𝑲)                           (27) 

is the conditional probability of state 𝑍𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ given 𝑇𝑛+1 − 𝑇𝑛 = 𝑠.  

Then, the MC simulation method can be used to estimate the reliability of the system 

within a certain mission time 𝑇𝑚𝑖𝑠𝑠, given the initial system state 𝑍0⃗⃗⃗⃗  at time 𝑇0 = 0. 

The method to simulate the behavior of the system consists in sampling the transition 

time from eq. (26) and the arrival state from eq. (27) for the components in the second 

group and, then, using the physics eq. (3) to calculate the evolution of the components 

in the first group within the transition times. Each simulation trial continues until the 

time of system evolution reaches 𝑇𝑚𝑖𝑠𝑠 or until the system enters the failure space 𝓕, 

event whose occurrence is recorded for the statistical estimation of the system 

reliability. 

 

The simulation procedure 

The procedure of the MC simulation method [33] is as follows: 

Set 𝑁𝑚𝑎𝑥 (the maximum number of replications) and 𝑘 = 0 (index of MC trials) 

Set 𝑘′ = 0 (number of MC trials that end in failure state) 

While 𝑘 < 𝑁𝑚𝑎𝑥  

Initialize the system by setting 𝑍′⃗⃗  ⃗ = (
𝑋 (0)

𝑌⃗ 
) (initial system state) and the time 

𝑇 = 0 (initial system time) 

Set 𝑡′ = 0 (state holding time) 

While 𝑇 < 𝑇𝑚𝑖𝑠𝑠 

Sample a 𝑡′ by using the probability density function eq. (26) 

Sample an arrival state 𝑌′⃗⃗  ⃗ for stochastic process 𝑌⃗ (𝑡) from all possible 

states, by using the conditional probability function eq. (27) 

Set 𝑇 = 𝑇 + 𝑡′ 

Calculate 𝑋 ⃗⃗  ⃗(𝑡) in the interval ,𝑇 − 𝑡′, 𝑇- by using the physics equations 

eq. (3) 

Set 𝑍′⃗⃗  ⃗ = (
𝑋 ⃗⃗  ⃗(𝑇)

𝑌′⃗⃗  ⃗
) 
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If 𝑇 ≤ 𝑇𝑚𝑖𝑠𝑠 

  If ∃𝑡 ∈ ,𝑇 − 𝑡′, 𝑇-, 𝑍 (𝑡) = (
𝑋 ⃗⃗  ⃗(𝑡)

𝑌⃗ 
) ∈  𝓕  

Set 𝑘′ = 𝑘′ + 1 

Break 

End if 

Else (when 𝑇 > 𝑇𝑚𝑖𝑠𝑠) 

  If ∃𝑡 ∈ ,𝑇 − 𝑡′, 𝑇𝑚𝑖𝑠𝑠- , 𝑍 (𝑡) = (
𝑋 ⃗⃗  ⃗(𝑡)

𝑌⃗ 
) ∈  𝓕  

Set 𝑘′ = 𝑘′ + 1 

Break 

End if 

End if 

Set 𝑌⃗ = 𝑌′⃗⃗  ⃗ 

End While 

Set 𝑘 = 𝑘 + 1 

End While □ 

 

The estimated component reliability at time 𝑇𝑚𝑖𝑠𝑠 can be obtained by 

𝑅̂(𝑇𝑚𝑖𝑠𝑠) = 1 − 𝑘′/𝑁𝑚𝑎𝑥                     (28) 

where k' represents the number of trials that end in the failure state of the system and 

the sample variance is [34]:  

𝑣𝑎𝑟𝑅̂(𝑇𝑚𝑖𝑠𝑠)
= 𝑅̂(𝑇𝑚𝑖𝑠𝑠)(1 − 𝑅̂(𝑇𝑚𝑖𝑠𝑠))/(𝑁𝑚𝑎𝑥 − 1)          (29) 

To calculate the value of 𝑋 ⃗⃗  ⃗(𝑡), Runge-Kutta methods [35, 36] can be applied for the 

numerical solution of the ordinary differential equations, which can guarantee the 

convergence of the numerical methods with accuracy of certain order by controlling 

the local truncation error. Therefore, higher number of replications will lead to lower 

sample variance in MC simulation method. 

 

Appendix B: FV method 

 

Assumptions 

 

This approach can be applied under the following assumptions: 

 The transition rates 𝜆𝑖 (𝑗  |  ∙, 𝜽𝑲), ∀𝑖 , 𝑗 ∈ 𝑺  are continuous and bounded 

functions from ℝ𝑑𝐿  to ℝ+. 
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 The physic equations 𝑓𝐿
𝑖  ⃗⃗ ⃗⃗  ⃗
(∙,∙ | 𝜽𝐿), ∀𝑖 ∈ 𝑺  are continuous functions from 

ℝ𝑑𝐿 × ℝ+ to ℝ𝑑𝐿  and locally Lipschitz continuous. 

 The physic equations 𝑓𝐿
𝑖  ⃗⃗ ⃗⃗  ⃗
(∙, 𝑡 | 𝜽𝐿), ∀𝑖 ∈ 𝑺 are sub-linear, i.e. there are some 

 1 > 0 and  2 > 0 such that  

∀𝑥 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝ+ |𝑓𝐿
𝑖  ⃗⃗ ⃗⃗  ⃗
(𝑥 , 𝑡 | 𝜽𝐿)| ≤  1(‖𝑥 ‖ + |𝑡|) +  2 

 The functions 𝑑𝑖𝑣(𝑓𝐿
𝑖  ⃗⃗ ⃗⃗  ⃗
(∙,∙ | 𝜽𝐿)), ∀𝑖 ∈ 𝑺 are almost everywhere bounded in 

absolute value by some real value 𝐷 > 0 (independent of 𝑖 ). 

 

Solution approach 

 

Let 𝑔𝑖 ⃗⃗  ⃗(∙,∙): ℝ𝑑𝐿 ×ℝ → ℝ𝑑𝐿 denote the solution of 

 

 𝑡
𝑔𝑖 ⃗⃗  ⃗(𝑥 , 𝑡 | 𝜽𝐿) = 𝑓𝐿

𝑖  ⃗⃗ ⃗⃗  ⃗
.𝑔𝑖 ⃗⃗  ⃗(𝑥 , 𝑡 | 𝜽𝐿), 𝑡 |  𝜽𝐿/ , ∀𝑖 ∈ 𝑺, 𝑥 ∈ ℝ

𝑑𝐿 , 𝑡 ∈ ℝ    (30) 

with 

 𝑔𝑖 ⃗⃗  ⃗(𝑥 , 0 | 𝜽𝐿) = 𝑥 , ∀𝑖 ∈ 𝑺, x⃗ ∈ ℝ                    (31) 

and 𝑔𝑖 ⃗⃗  ⃗(𝑥 , 𝑡 | 𝜽𝐿) represents the deterministic evolution of 𝑋 ⃗⃗  ⃗(𝑡) at time t, starting 

from the condition 𝑥  and while the processes 𝑌⃗ (𝑡) hold in state 𝑖 . 

The state space ℝ𝑑𝐿  of continuous variables 𝑋 ⃗⃗  ⃗(𝑡) is divided into an admissible 

mesh ℳ, which is a family of measurable subsets of ℝ𝑑𝐿  (ℳ is a partition of ℝ𝑑𝐿) 

such that: 

(1) ⋃ 𝐴≦∈ℳ = ℝ𝑑𝐿 . 

(2) ∀𝐴, 𝐵 ∈ ℳ, 𝐴 ≠ 𝐵  𝐴  𝐵 =  . 

(3) 𝑚≦ = ∫ 𝑑𝑥⃗⃗⃗⃗ 
≦

> 0, ∀𝐴 ∈ ℳ, where 𝑚≦ is the volume of grid 𝐴.  

(4) 𝑠𝑢𝑝≦∈ℳ𝑑𝑖𝑎𝑚(𝐴) < +∞ where 𝑑𝑖𝑎𝑚(𝐴) = 𝑠𝑢𝑝∀𝑥 , ⃗ ∈≦|𝑥 − 𝑦 |. 

Additionally, the time space ℝ+  is divided into small intervals 

ℝ+ = ⋃ ,𝑛∆𝑡, (𝑛 + 1)∆𝑡,𝑛=0,1,2,… , by setting the time step ∆𝑡 > 0 (the length of 

each interval). 

Let 𝑝𝑡(𝑑𝑧  | 𝜽 = 𝜽𝐿 ∪ 𝜽𝐾)  denote the probability distribution of 𝑍 (𝑡) . The 

numerical scheme aims at constructing an approximate value 𝜌𝑡(𝑥 ⃗⃗⃗  ,∙  | 𝜽)𝑑𝑥 ⃗⃗⃗   for 

𝑝𝑡(𝑑𝑥 ⃗⃗⃗  ,∙  | 𝜽), such that 𝜌𝑡(𝑥 ⃗⃗⃗  ,∙  | 𝜽) is constant on each ,𝑛∆𝑡, (𝑛 + 1)∆𝑡,× 𝐴 × *𝒚𝑖+,

∀𝐴 ∈ℳ, 𝑖 ∈ 𝑺:   

𝜌𝑡(𝑥 ⃗⃗⃗  , 𝑖  ⃗ | 𝜽) = 𝑃𝑛(𝐴, 𝑖  | 𝜽), ∀𝑖 ∈ 𝑺, 𝑥 ∈ 𝐴, 𝑡 ∈ ,𝑛∆𝑡, (𝑛 + 1)∆𝑡,    (32) 

𝑃0(𝐴, 𝑖  | 𝜽), ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ is defined as follows: 
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𝑃0(𝐴, 𝑖  | 𝜽) = ∫ 𝑝0(𝑑𝑥 ⃗⃗⃗  , 𝑖  ⃗ | 𝜽)≦
/𝑚≦                 (33) 

Then, 𝑃𝑛+1(𝐴, 𝑖  | 𝜽), ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ, 𝑛 ∈ ℕ  can be calculated considering the 

deterministic evaluation of 𝑋 ⃗⃗  ⃗(𝑡) and the stochastic evolution of 𝑌 ⃗⃗  ⃗(𝑡) based on 

𝑃𝑛(ℳ, 𝑖  | 𝜽) by the Chapman-Kolmogorov forward equation, as follows: 

𝑃𝑛+1(𝐴, 𝑖  | 𝜽) 

=
1

1+∆𝑡𝑏𝐴
𝑖 𝑃𝑛+1̂(𝐴, 𝑖  | 𝜽) + ∆𝑡 ∑

𝑎𝐴
𝑗⃗ 𝑖 

1+∆𝑡𝑏𝐴
𝑗⃗ 
𝑃𝑛+1̂(𝐴, 𝑗  | 𝜽)𝑗 ∈𝑺             (34) 

where  

𝑎≦
𝑗 𝑖 
= ∫ 𝜆𝑗 (𝑖 , 𝑥  | 𝜽𝐾)𝑑𝑥⃗⃗⃗⃗ ≦

𝑚≦⁄ , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ            (35) 

is the average transition rate from state 𝑗  to state 𝑖  for grid 𝐴, 

𝑏≦
𝑖 = ∑ 𝑎≦

𝑖 𝑗 
𝑗  ≠ 𝑖 , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ                  (36) 

is the average transition rate out of state 𝑖  for grid 𝐴, 

𝑃𝑛+1̂(𝐴, 𝑖  | 𝜽) = ∑ 𝑚≧≦
𝑖 

≧∈ℳ 𝑃𝑛(𝐵, 𝑖  | 𝜽)/𝑚≦, ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ      (37) 

is the approximate value of probability density function on *𝑖 + × ,(𝑛 + 1)∆𝑡, (𝑛 +

2)∆𝑡,× 𝐴 according to the deterministic evolution of 𝑋 ⃗⃗  ⃗(𝑡), 

𝑚≧≦
𝑖 = ∫ 𝑑𝑦⃗⃗ ⃗⃗  

* ⃗ ∈≧ | 𝑔𝑖 ⃗⃗⃗⃗ ( ⃗ ,∆𝑡 | 𝜽𝐿)∈≦+
, ∀𝑖 ∈ 𝑺, 𝐴, 𝐵 ∈ ℳ             (38) 

is the volume of the part of grid 𝐵 which will enter grid 𝐴 after time ∆𝑡, according 

to the deterministic evolution of 𝑋 ⃗⃗  ⃗(𝑡).  

Fig. 14 shows an illustrative example in ℝ2 to explain the procedure of FV scheme.   

 

 

 

Fig. 14. The evolution of degradation processes during ,𝑛∆𝑡, (𝑛 + 1)∆𝑡-. [31] 

 

FV scheme solves PDMP by considering two different situations to calculate the 

“2”

“1”
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probability that 𝑍 (𝑡) ∈ (A, 𝑖 ), ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ  at time (𝑛 + 1)∆𝑡, according to eq. 

(34). The first one (denoted by “1” in Fig.14) is that 𝑋 (𝑡) evolves but 𝑌⃗ (𝑡) doesn‟t 

change, which is quantified by the first term of right-hand parts of eq. (34) where  

1

1+∆𝑡𝑏𝐴
𝑖  is the approximated probability that no transition happens from state 𝑖  for grid 

𝐴 (𝐵1, 𝐵2 are the grids of which some parts will enter grid 𝐴 according to the 

deterministic evaluation of 𝑋 ⃗⃗  ⃗(𝑡) at time (𝑛 + 1)∆𝑡 given 𝑌⃗ (𝑡) = 𝑖 ). The second 

one (denoted by “2” in Fig.14) is that 𝑋 (𝑡) evolves and 𝑌⃗ (𝑡) step to state 𝑖  from 

another state 𝑗 ∈ 𝑆, which is quantified by the second term of right-hand parts of eq. 

(34), where 𝑎≦
𝑗 𝑖 
∆𝑡 is the transition probability from state 𝑗  to state 𝑖  for grid 𝐴 

(𝐵3, 𝐵4  are the grids of which some parts will enter grid 𝐴  according to the 

deterministic evaluation of 𝑋 ⃗⃗  ⃗(𝑡) at time (𝑛 + 1)∆𝑡 given 𝑌⃗ (𝑡) = 𝑗 . 

The approximated solution 𝜌𝑡(𝑥 ⃗⃗⃗  ,∙  | 𝜽)𝑑𝑥 ⃗⃗⃗   weakly converges towards 

𝑝𝑡(𝑑𝑥 ⃗⃗⃗  ,∙  | 𝜽) when ∆𝑡 → 0 and |ℳ|/∆𝑡 → 0 where |ℳ| = 𝑠𝑢𝑝≦∈ℳ𝑑𝑖𝑎𝑚(𝐴).  

The reliability of the system can, then, be calculated as follows:  

𝑅(𝑡) = ∫ 𝑝𝑡(𝑑𝑧  | 𝜽)𝑧  ∉ 𝓕
                        (39) 

 


