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‡Large Networks and System Group (LANEAS), CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France

ABSTRACT

State-of-the-art algorithms for energy-efficient resource allocation
in wireless networks are based on fractional programming theory,
and are able to find the global maximum of the system energy effi-
ciency only in noise-limited scenarios. In interference-limited sce-
narios, several sub-optimal solutions have been proposed, but an ef-
ficient framework to globally maximize energy-efficient metrics is
still lacking. The goal of this work is to fill this gap, which will be
achieved by merging fractional programming theory with monotonic
optimization theory. The resulting optimization framework is useful
for at least two main reasons. First, it sheds light on the ultimate
energy-efficient performance of wireless networks. Second, it pro-
vides the means to benchmark the energy efficiency of practical, but
sub-optimal, solutions.

Index Terms— Energy Efficiency, Fractional programming,
Monotonic optimization, Resource allocation, Power control.

1. INTRODUCTION AND RELATION TO PRIOR WORK

The percentage of the total CO2-equivalent emissions due to infor-
mation and communications technologies (ICT) is estimated to be
5% [1]. While this may seem a small percentage, it will rapidly
increase, due to the advent of 5G networks and the associated ex-
ponential growth of connected devices. Credited sources foresee
the number of connected devices to reach 50 billions by 2020, with
a data traffic increase of a factor 1000 [2]. If no countermeasures
are taken, the energy demand to operate and provide such massive
data rates to this massive number of devices will become unmanage-
able, and the resulting greenhouse gas emissions and electromag-
netic pollution will exceed safety thresholds. While restricting the
global ICT usage is unrealistic, a promising answer to this issue lies
in optimizing the energy efficiency (EE) of ICT systems, defined
as the ratio between the data rate and associated energy consump-
tion. Given the fractional nature of the EE, the main mathematical
framework adopted for EE optimization is fractional programming
theory [3]. However, while fractional programming algorithms ex-
hibit polynomial complexity in noise-limited systems [4], their com-
plexity becomes prohibitive in interference-limited systems [3]. A
common way to circumvent this problem is to only consider subop-
timal orthogonal or semi-orthogonal transmission schemes as well
as interference cancellation techniques, to fall back into the noise-
limited case. In [5, 6] multi-carrier networks are considered, and the
global energy efficiency (GEE) of the system (defined as the ratio
between the sum achievable rate and the total consumed power) is
optimized using orthogonal or semi-orthogonal subcarrier allocation

schemes. In [7], the authors consider a multiple-antenna system and
aim at maximizing the GEE when non-linear interference cancel-
lation techniques are used. However, orthogonal interference sup-
pression schemes inevitably result in a poor resource reutilization in
multi-link networks and are thus not reasonable in large networks.
Moreover, practical impairments like channel estimation errors can
also break the orthogonality in many cases. Alternative approaches
employ suboptimal procedures, typically based on the use of alter-
nating optimization techniques, as in [8], where the minimum of the
individual EEs is maximized and in [9, 10] where both the maxi-
mization of GEE and of the sum of the individual EEs are consid-
ered. In [11, 12] fractional programming is used in conjunction with
sequential convex optimization to develop an optimization frame-
work able to determine local optima of the system EE with polyno-
mial complexity.

The main issue with all the cited works is that, although all pro-
posed solutions exhibit an affordable complexity, they are not guar-
anteed to achieve global optimality. Indeed, a framework to obtain
the global solution of EE maximization problems is currently lack-
ing. This prevents one from gaining insight on the ultimate energy-
efficient performance of wireless networks and from benchmarking
the performance of suboptimal methods against the optimal solu-
tion. This work aims at filling these gaps by developing an opti-
mization framework to globally maximize the EE in wireless net-
works. This will be done by merging fractional programming the-
ory with monotonic optimization, which is a theory that provides
algorithms to globally solve certain classes of non-convex problems
[13, 14]. Monotonic optimization has been previously used to glob-
ally solve power control and scheduling problems [15], rate maxi-
mization problems [16], and beamforming problems [17]. Recent
surveys of monotonic optimization applied to wireless communica-
tions are [18, 19].

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a wireless network wherein K mutually interfering links
are active over a communication bandwidth of B Hz. Each link in-
cludes a single-antenna transmitter node and a receiver node (possi-
bly equipped with multiple antennas). Denoting by p theK×1 vec-
tor collecting all users’ transmit powers, we assume the k-th link’s
signal to interference plus noise ratio (SINR) γk(p) takes on the fol-
lowing general form:

γk(p) =
αkpk

σ2 + φkpk +
∑K

i=1,i6=k piβi,k
. (1)



The coefficient σ2 is the thermal noise power at the receiver (over
the bandwidth B), αk is the k-th user’s channel power gain, while
{βi,k} are multi-user interference coefficients, depending on the
other users’ channel coefficients and on global system parameters.
The coefficient φk models a self-interference term, proportional
to the useful power, which arises in several relevant instances of
communication systems [20], such as hardware-impaired networks,
receivers with imperfect CSI estimation, and relay-assisted commu-
nications. By setting φk = 0, (1) reduces to the usual SINR expres-
sion in interference networks. Given (1), the k-th user’s achievable
rate is expressed as B log2(1 + γk(p)) = q+k (p) − q−k (p), with
q+k (p) = B log2(σ2 + (αk + φk)pk +

∑K
i=1,i 6=k piβi,k) and

q−k (p) = B log2(σ2 + φkpk +
∑K

i=1,i 6=k piβi,k).
The EE (measured in bit/Joule) of link k is defined as the ratio

of the achievable rate and the total consumed power (neglecting the
functional dependence of γk from p for notational simplicity):

EEk(p) =
B log2(1 + γk)

µkpk + Ψk
(2)

wherein µk ≥ 1 is the inverse of the power amplifier efficiency of
transmitter node k and Ψk is the circuit power required to operate
link k accounting for the dissipation in analog hardware, digital sig-
nal processing, backhaul signaling, and other overhead costs (such as
cooling and power supply losses) [21]. Clearly, (2) is a link-centric
(or user-centric) performance metric. A network-centric definition
of EE requires to combine the individual energy efficiencies of the
different links. Although different approaches have been proposed, a
single definition that unarguably best represents the EE of the whole
network is not available, since the different EEs are typically con-
flicting objectives [3, 22]. Two well-established metrics to measure
the network EE are the GEE and the weighted minimum energy ef-
ficiency (WMEE), defined as [3, 4].

GEE(p) =

∑K
k=1B log2(1 + γk)∑K

k=1 µkpk + Ψk

(3)

WMEE(p) = min
k=1,...,K

wk
B log2(1 + γk)

µkpk + Ψk
. (4)

The GEE has the strong physical meaning of network benefit-cost ra-
tio, in terms of global amount of reliably transmitted data and global
amount of consumed energy. However, it does not depend on the in-
dividual EEs, and so does not allow to tune the EE of the individual
links according to specific needs. Instead, the WMEE is more con-
nected to a multi-objective optimization perspective [22], in which
the individual EEs are the objectives to maximize. By varying the
weights in (4) it is possible to prioritize the links that require a higher
EE and to describe the complete energy-efficient Pareto boundary of
the system.1

The goal of this work is to find the global solution of the follow-
ing optimization program:

max
p

u(p) (5a)

s.t. pk ∈ [0, Pmax,k] , B log2(1 + γk) ≥ Rmin,k , (5b)

wherein the objective u(p) can be either the GEE or the WMEE,
Pmax,k and Rmin,k are the maximum feasible transmit power and
minimum acceptable rate for link k, for all k = 1, . . . ,K.

1For the considered system, the Pareto-boundary is the outer boundary of
the K-dimensional region containing all feasible energy-efficient operating
points, i.e. all feasible K × 1 vectors [EE1(p), . . . ,EEk(p)].

3. PROBLEM SOLUTION

As far as both GEE and WMEE maximization are concerned, the
optimization problem in (5) is a fractional program. However, frac-
tional programming algorithms exhibit a guaranteed polynomial
complexity only if the numerator and denominator of the fraction to
maximize are respectively concave and convex in the optimization
variables, and if the constraints are also convex [3]. Unfortunately,
this requirement is not fulfilled in interference-limited networks,
because the presence of the functions q−k (p) (which are non-zero
whenever multi-user interference is present) makes the numera-
tors of the individual EEs non-concave in p. For these scenarios,
fractional programs are in general NP-hard, and the conventional ap-
proach is to resort to global optimization algorithms. However, these
methods operate by performing an exhaustive search of the whole
feasible set, with a prohibitive computational complexity, even for
small problem instances, and a convergence that is only guaranteed
if the functions have a limited variability (e.g. Lipschitz continuity).
Instead, a more recent optimization framework with the potential
to reduce such computational burden and to ensure a guaranteed
convergence is monotonic optimization [13]. Roughly speaking,
the basic idea is that if the objective to maximize is increasing in
all optimization variables, then it is not necessary to explore the
complete feasible set, but only its outer boundary.

The main difficulty in applying this framework for EE maxi-
mization is that, unlike what happens for achievable rates, both the
GEE and the WMEE are not monotonic in the transmit powers.
However, this difficulty can be overcome by an interplay of frac-
tional programming and monotonic optimization. We start by pro-
viding some necessary preliminaries on fractional programming and
monotonic optimization in Sections 3.1 and 3.2, respectively. Next,
we develop the proposed optimization framework in Sections 3.3
and 3.4, where the global maximizations of the GEE and WMEE are
carried out, respectively.

3.1. Fractional programming
For a more comprehensive overview of fractional programming ap-
plied to EE maximization in wireless networks, the interested reader
is referred to [3].
Definition 1 (Generalized fractional program) Let D ⊆ RN and
consider the functions fk : D → R and gk : D → R++, with
k = 1, . . . ,K. A generalized fractional program is the optimization
problem defined as

max
x

min
k=1,...,K

fk(x)

gk(x)
s.t. x ∈ D. (6)

If K = 1, then the above problem reduces to the so-called single-
ratio fractional program:

max
x

f1(x)

g1(x)
s.t. x ∈ D. (7)

Since the objective function in (6) is in general not concave,
standard convex optimization algorithms are not guaranteed to solve
(6) and specific algorithms are required. Towards this end, we have
the following key result.
Proposition 1 [23, 24]. A vector x? ∈ D solves (6) if and only if

x? = arg max
x∈D

{
min

k=1,...,K

[
fk(x)− λ?gk(x)

]}
(8)

with λ? being the unique zero of the auxiliary function F (λ):

F (λ) = max
x∈D

min
k=1,...,K

{fk(x)− λgk(x)} . (9)



This result allows solving (6) by finding the unique zero of F (λ).
To this end, the most widely used algorithm is the (Generalized, if
K > 1) Dinkelbach’s algorithm [24, 25], reported in Algorithm 1.

Algorithm 1 Generalized Dinkelbach’s algorithm
Initialize λ0 with F (λ0) ≥ 0, j = 0;
repeat

Solve the problem:
x?
j = arg max

x∈D

{
mink=1,...,K

[
fk(x)− λjgk(x)

]}
;

λj+1 = mink=1,...,K
fk(x

?
j )

gk(x
?
j )

;
j = j + 1;

until F (λj) > ε

It can be shown that the update rule for λ follows Newton’s method
applied to the function F (λ). Hence, Algorithm 1 exhibits a super-
linear convergence rate, but converges to the global optimum of the
corresponding instance of fractional problem only provided that (8)
can be globally solved at each iteration. In general, if (8) is not a
convex problem, this calls for global optimization algorithms that
perform an exhaustive search over the whole feasible set, with un-
manageable computational complexity and with a convergence that
is only guaranteed if the functions have a limited variability (e.g.
Lipschitz continuity).

3.2. Monotonic optimization
Monotonic optimization provides a framework to globally solve
problems that exhibit monotonicity or hidden monotonicity struc-
tures [13, 14]. Some fundamental definitions and results from
monotonic optimization theory are briefly recalled henceforth.
Definition 2 (Monotonicity in RN ) A function f : RN → R is
monotonically increasing if f(y) ≥ f(x) when y � x, with �
denoting component-wise ordering.

Definition 3 (Hyper-rectangle in RN ) Let a, b ∈ RN with a �
b. Then, the set of all x ∈ RN such that a � x � b is a hyper-
rectangle in RN and is denoted by [a,b].

Definition 4 (Normal and Co-normal sets) A set S ⊂ RN is nor-
mal if ∀x ∈ S, the hyper-rectangle [0,x] belongs to S. A set
Sc ⊂ RN is co-normal in [0,b] if ∀x ∈ Sc, then [x,b] ⊂ Sc.
A given function h : RN → R defines a normal or a co-normal set
if the following results hold true:

Proposition 2 ([13]) The set S = {x ∈ RN : h(x) ≤ 0} is normal
and closed if h is lower semi-continuous and increasing. The set
Sc = {x ∈ RN : h(x) ≥ 0} is co-normal and closed if h is upper
semi-continuous and increasing.

Definition 5 (Monotonic optimization) A monotonic optimization
problem in canonical form is defined as

max
x

f(x) s.t. x ∈ S ∩ Sc (10)

wherein f : RN → R is an increasing function, S ⊂ [0,b] is a
compact, normal set with nonempty interior, and Sc is a closed co-
normal set in [0,b].
The main result of monotonic optimization theory states that the so-
lution to (10) lies on the upper boundary of S ∩ Sc [13, Proposition
7]. In these cases, methods like the polyblock algorithm [13] and
the branch-reduce-and-bound (BRB) algorithm [14] can be used to
globally solve (10) by searching only on the upper boundary of the
feasible set, thus drastically simplifying the problem. Nevertheless,

we remark that the complexity of monotonic optimization methods
is still exponential in the problem size. However, as already ob-
served, it is much lower than general global optimization methods
which do not exploit any monotonicity structure. This makes mono-
tonic optimization attractive for the development of a framework to
benchmark any suboptimal method for solving (10).

3.3. GEE maximization
The GEE maximization belongs to the class of single-ratio fractional
problems. So, finding its solution by the Dinkelbach’s algorithm
requires to solve the following auxiliary problem at iteration j:

max
p

K∑
k=1

B log2(1 + γk)− λj (µkpk + Ψk) s.t. p ∈ P (11)

for any given positive λj , and with P denoting the feasible set of
Problem (5). Note that the above problem is not in convex form due
to the achievable rates, {B log2(1 + γk)}, which also appear in the
rate constraints. It is also not a monotonic optimization problem in
canonical form, since the objective function is not increasing in p.
Proposition 3 Problem (11) can be reformulated as a monotonic
problem in canonical form.
Proofsketch: Problem (11) can be equivalently written as

max
p

q+(p)− q−(p, λj) s.t. p ∈ P (12)

wherein q+(p) and q−(p, λj) are increasing in p and given by

q+(p) =

K∑
k=1

q+k (p), q−(p, λj) =

K∑
k=1

q−k (p) + λj

(
µkpk + Ψk

)
.

The above reformulation is not yet a monotonic optimization prob-
lem in canonical form since the difference q+(p) − q−(p) of two
increasing functions is not monotonic in the sense of Definition 2.
To proceed further, define pmax = [Pmax,1, . . . , Pmax,K ] and in-
troduce the auxiliary variable t = q−(pmax, λj)−q−(p, λj). Then,
for any given λj , rewrite the auxiliary problem in (12) as

max
(t,p)

q+(p) + t s.t. (t, p) ∈ P ∩Q (13)

with Q=

{
(t,p) :

0 ≤ t ≤ q−(pmax, λj)− q−(p, λj)
0 ≤ t ≤ q−(pmax, λj)− q−(0K , λj)

}
.

As for the constraints, the minimum rate constraint functions are
also not monotonic in the sense of Definition 2. However, the set of
constraints B log2(1 + γk)− Rmin,k ≥ 0 with k = 1, . . . ,K, can
be equivalently rewritten as the following single constraint:

min
k=1,...,K

[
q+k (p)− q−k (p)−Rmin,k

]
≥ 0 ⇐⇒ (14)

min
k=1,...,K

q+k (p)−

 K∑
i=1

q−i (p)−
K∑

i=1,i 6=k

q−i (p)

−Rmin.k

= (15)

min
k=1,...,K

q+k (p) +

K∑
i=1,i6=k

q−i (p)−Rmin,k


︸ ︷︷ ︸

q̃+(p)

−
K∑
i=1

q−i (p)︸ ︷︷ ︸
q̃−(p)

≥ 0 (16)

which is the difference of the two increasing functions q̃+(p) and
q̃−(p). Similarly as above, we can thus introduce the auxiliary vari-
able s and reformulate the problem in (13) as

max
(s,t,p)

q+(p) + t (17)

s.t. (t, p) ∈ Q , 0 ≤ s ≤ q̃−(pmax)− q̃−(0K)

q̃−(p) + s ≤ q̃−(pmax) , q̃+(p) + s ≥ q̃−(pmax)



Finally, it can be verified that Problem (17) fulfills Definition 5, thus
being a monotonic problem in canonical form. The exact details are
omitted due to space constraints. �

3.4. WMEE maximization
The maximization of WMEE belongs to the class of generalized
fractional programs and requires to solve the following auxiliary
problem at iteration j:

max
p

min
k=1,...,K

q+k (p)−q−k (p)−λj(µkpk+Ψk) s.t. p ∈ P. (18)

As before, the objective function is not monotonic.
Proposition 4 Problem (18) can be reformulated as a monotonic
problem in canonical form.

Proofsketch: Letting νk(p, λj) = q−k (p) + λj (µkpk + Ψk), we
can proceed as follows:

q+k (p)− νk(p, λj) = q+k (p)−

 K∑
i=1

νi(p, λj)−
K∑

i=1,i 6=k

νi(p, λj)


=

q+k (p) +

K∑
i=1,i 6=k

νi(p, λj)

− K∑
i=1

νi(p, λj). (19)

By similar steps as in Section 3.3, we define t =
∑K

i=1 νi(pmax, λj)−∑K
i=1 νi(p, λj), and reformulate (18) as

max
(t,p)

min
k=1,...,K

q+k (p) +

K∑
i=1,i 6=k

νi(p, λj) + t s.t. (t, p) ∈ P ∩Q′

with Q′ =

{
(t,p) :

0 ≤ t ≤
∑K

i=1 νi(pmax, λj)− νi(p, λj)

0 ≤ t ≤
∑K

i=1 νi(pmax, λj)− νi(0K , λj)

}
,

which, reformulating the rate constraints as in Section 3.3, can be
checked to fulfill Definition 5. �

4. NUMERICAL RESULTS

To exemplify the benefits of our framework, we consider the uplink
massive MIMO scenario from [20], with B = 180 kHz. A base sta-
tion equipped with 50 antennas and subject to hardware impairments
serves a square area with edge of 1 km, where K = 5 mobiles are
randomly placed. It is shown in [20] that, assuming MRC recep-
tion, the SINR enjoyed by the generic mobile k is expressed as in
(1), wherein the coefficients αk, φk, and βi,k depend only the prop-
agation channels (here modeled as realizations of Rayleigh fading
with path-loss model as in [26]) and on a parameter ε ∈ [0, 1] re-
lated to the hardware quality (ε = 0 means ideal hardware). Here
we set ε = 10−2. All mobiles have the same maximum feasible
power Pmax and hardware-dissipated power Ψk = −20 dBW. The
noise power is generated as σ2 = FBN0, wherein F = 3 dB and
N0 = −174 dBm/Hz are the receiver noise figure, and noise power
spectral density, respectively. No rate constraints have been enforced
(i.e. Rmin,k = 0 for all k).

In Fig. 1 we use our GEE maximization framework to bench-
mark the (theoretically suboptimal) procedure from [20], versus
Pmax. As a baseline scheme, we also report the GEE obtained by
full power allocation (i.e. pk = Pmax for all k). The results have
been obtained by averaging over 103 independent channel scenarios.
Our benchmark allows showing that the polynomial-time algorithm
in [20] enjoys virtually optimal performance. Also, the achieved
GEE eventually saturates, because for large Pmax only the transmit
power required to achieve the global maximizer of the GEE is used.

In Fig. 2 we plot the energy-efficient Pareto region of the system for
K = 2. All other system parameters are as in Fig. 1. The Pareto
region is obtained by solving the WMEE maximization problem for
different choices of the weights. As a comparison, we report the
energy-efficient region obtained by a grid search over the transmit
powers. We can see that our approach is able to characterize the
complete region, while the gird search easily fails to find all parts.
Also, it is interesting to observe that the point corresponding to
GEE maximization lies on the Pareto frontier. In general, this is not
guaranteed, because the GEE is not increasing in all individual EEs.

5. CONCLUSIONS

This work has developed an optimization framework to globally
maximize the EE in wireless networks by jointly exploiting mono-
tonic optimization theory and fractional programming theory. The
framework is general enough to be applied to several instances of
communication systems, such as general interference networks,
massive MIMO systems, relay-assisted communications. While
still exhibiting an exponential complexity, the developed framework
enjoys a guaranteed convergence and a much lower complexity than
standard global optimization algorithms. Also, it enables to bench-
mark practical algorithms, which are not theoretically guaranteed to
achieve global optimality, as illustrated in the numerical results.

Pmax [dBW]
-40 -35 -30 -25 -20 -15 -10

G
E
E

[M
b
it
/J

]

0

10

20

30

40

50

60

70

GEE maximization from [20].
GEE Global optimum
Full power allocation

Fig. 1. GEE versus Pmax by: (a) global optimum by monotonic
optimization plus fractional programming; (b) GEE maximization
algorithm proposed in [20]; (c) Full power allocation.

EE1 [Gbit/J]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

E
E
2
[G

b
it
/J

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Grid points
WMEE maximization
GEE Maximization Point

Fig. 2. Energy-efficient Pareto region for K = 2, by: (a) WMEE
maximization by monotonic optimization plus fractional program-
ming; (b) grid search over power; (c) GEE maximization point.



6. REFERENCES

[1] A. Fehske, J. Malmodin, G. Biczók, and G. Fettweis, “The
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