S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1098/rstb.1952.0012

D. Angeli, A Lyapunov approach to incremental stability properties, IEEE Transactions on Automatic Control, vol.47, issue.3, pp.410-421, 2002.
DOI : 10.1109/9.989067

URL : http://aldebaran.elo.utfsm.cl/datasheet/cdc/cdc00/PDF/AUTHOR/CD001044.PDF

F. M. Atay and A. Hutt, Neural Fields with Distributed Transmission Speeds and Long???Range Feedback Delays, SIAM Journal on Applied Dynamical Systems, vol.5, issue.4, 2006.
DOI : 10.1137/050629367

URL : http://www.loria.fr/~huttaxel/filez/SIADS06_own.pdf

P. Beim-graben and A. Hutt, Attractor and saddle node dynamics in heterogeneous neural fields, EPJ Nonlinear Biomedical Physics, vol.12, issue.20, pp.1-17, 2014.
DOI : 10.1016/S0006-3495(72)86068-5

URL : https://hal.archives-ouvertes.fr/hal-00987789

P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, Journal of Physics A: Mathematical and Theoretical, vol.45, issue.3, p.2012
DOI : 10.1088/1751-8113/45/3/033001

URL : http://www.math.utah.edu/~bresslof/publications/11-7.pdf

G. Buzsaki, Rhythms of the Brain, 2006.
DOI : 10.1093/acprof:oso/9780195301069.001.0001

A. Chaillet, G. Detorakis, S. Palfi, and S. Senova, Robust stabilization of delayed neural fields with partial measurement and actuation, Automatica, vol.83, pp.262-274, 2017.
DOI : 10.1016/j.automatica.2017.05.011

URL : https://hal.archives-ouvertes.fr/hal-01522308

A. Chaillet, A. Yu, B. S. Pogromsky, and . Rüffer, A Razumikhin approach for the incremental stability of delayed nonlinear systems, 52nd IEEE Conference on Decision and Control, 2013.
DOI : 10.1109/CDC.2013.6760110

URL : https://hal.archives-ouvertes.fr/hal-00855656

S. Coombes, P. Beim-graben, R. Potthast, and J. Wright, Neural Fields: Theory and Applications, 2014.

B. Demidovich, Lectures on Stability Theory, 1967.

G. Detorakis and A. Chaillet, Incremental stability of spatiotemporal delayed dynamics and application to neural fields, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), p.2017
DOI : 10.1109/CDC.2017.8264558

URL : https://hal.archives-ouvertes.fr/hal-01587961

G. Detorakis, A. Chaillet, S. Palfi, and S. Senova, Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study, Frontiers in Neuroscience, vol.9, issue.237, p.2015
DOI : 10.3389/fnins.2015.00237

URL : https://hal.archives-ouvertes.fr/hal-01251739

E. Devane and I. Lestas, Delay-independent incremental stability in time-varying monotone systems satisfying a generalized condition of two-sided scalability, Automatica, vol.76, pp.1-9, 2017.
DOI : 10.1016/j.automatica.2016.07.044

O. Faugeras, F. Grimbert, J. Slotine, R. Veltz, and F. Grimbert, Absolute stability and complete synchronization in a class of neural fields models Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks, SIAM Journal of Applied Mathematics Neural Computation, vol.61, issue.211, pp.205-250147, 2008.

G. Faye and O. Faugeras, Some theoretical and numerical results for delayed neural field equations, Physica D: Nonlinear Phenomena, vol.239, issue.9, pp.561-578, 2010.
DOI : 10.1016/j.physd.2010.01.010

URL : https://hal.archives-ouvertes.fr/hal-00847433

F. Forni and R. Sepulchre, A Differential Lyapunov Framework for Contraction Analysis, IEEE Transactions on Automatic Control, vol.59, issue.3, pp.614-628, 2014.
DOI : 10.1109/TAC.2013.2285771

URL : http://orbi.ulg.ac.be/bitstream/2268/165111/1/1208.2943v4.pdf

V. Fromion, S. Monaco, and D. Normand-cyrot, Asymptotic properties of incrementally stable systems, IEEE Transactions on Automatic Control, vol.41, issue.5, pp.721-723, 2002.
DOI : 10.1109/9.489210

URL : https://hal.archives-ouvertes.fr/hal-01652577

V. Fromion, M. G. Safonov, and G. Scorletti, Necessary and sufficient conditions for lur'e system incremental stability, Proc. European Control Conference, pp.71-76, 2003.

J. K. Hale, Theory of functional differential equations Applied mathematical sciences, pp.1-376, 1977.

C. Hammond, H. Bergman, and P. Brown, Pathological synchronization in Parkinson's disease: networks, models and treatments, Trends in Neurosciences, vol.30, issue.7, pp.357-364, 2007.
DOI : 10.1016/j.tins.2007.05.004

I. Karafyllis, Lyapunov theorems for systems described by retarded functional differential equations. Nonlinear Analysis: Theory, Methods & Applications, vol.64, issue.3, pp.590-617, 2006.
DOI : 10.1109/cdc.2005.1582909

URL : http://arxiv.org/pdf/math/0506368

N. Kopell, G. B. Ermentrout, M. A. Whittington, and R. D. Traub, Gamma rhythms and beta rhythms have different synchronization properties, Proceedings of the National Academy of Sciences, pp.1867-1872, 2000.
DOI : 10.1113/jphysiol.1993.sp019857

URL : http://www.pnas.org/content/97/4/1867.full.pdf

N. N. Krasovskii, Problems of the theory of stability of motion, 1963.

W. Lohmiller and J. J. Slotine, On contraction analysis for nonlinear systems, Automatica, vol.34, issue.6, 1998.

M. Margaliot, E. D. Sontag, and T. Tuller, Contraction after small transients, Automatica, vol.67, pp.178-184, 2016.
DOI : 10.1016/j.automatica.2016.01.018

URL : https://manuscript.elsevier.com/S0005109816000194/pdf/S0005109816000194.pdf

A. J. Nevado-holgado, J. R. Terry, and R. Bogacz, Conditions for the Generation of Beta Oscillations in the Subthalamic Nucleus-Globus Pallidus Network, Journal of Neuroscience, vol.30, issue.37, pp.12340-12352, 2010.
DOI : 10.1523/JNEUROSCI.0817-10.2010

W. Pasillas-lépine, Delay-induced oscillations in Wilson and Cowan???s model: an analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects, Biological Cybernetics, vol.12, issue.1, pp.289-308, 2013.
DOI : 10.1016/S0006-3495(72)86068-5

A. V. Pavlov, N. Van-de-wouw, and H. Nijmeijer, Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach, Systems & Control: Foundations & Applications, 2006.
DOI : 10.1007/0-8176-4465-2

A. V. Pavlov, N. Van-de-wouw, and H. Nijmeijer, Frequency Response Functions for Nonlinear Convergent Systems, IEEE Transactions on Automatic Control, vol.52, issue.6, pp.1159-1165, 2007.
DOI : 10.1109/TAC.2007.899020

P. Pepe, The Problem of the Absolute Continuity for Lyapunov???Krasovskii Functionals, IEEE Transactions on Automatic Control, vol.52, issue.5, pp.953-957, 2007.
DOI : 10.1109/TAC.2007.895855

A. Yu, A. S. Pogromsky, and . Matveev, A non-quadratic criterion for stability of forced oscillations, Systems & Control Letters, vol.62, issue.5, pp.408-412, 2013.

G. Pola, P. Pepe, M. D. Benedetto, and P. Tabuada, Symbolic models for nonlinear time-delay systems using approximate bisimulations, Systems & Control Letters, vol.59, issue.6, pp.365-373, 2010.
DOI : 10.1016/j.sysconle.2010.04.001

URL : http://arxiv.org/pdf/0903.0361

B. S. Rüffer, N. Van-de-wouw, and M. Mueller, Convergent systems vs. incremental stability, Systems & Control Letters, vol.62, issue.3, pp.277-285, 2013.
DOI : 10.1016/j.sysconle.2012.11.015

G. Russo, M. Di-bernardo, and E. D. Sontag, Global entrainment of transciptional systems to periodic inputs, PLoS Computational Biology, vol.6, issue.4, pp.1-26, 2010.
DOI : 10.1371/journal.pcbi.1000739

URL : https://doi.org/10.1371/journal.pcbi.1000739

N. Van-de-wouw, W. Michiels, and B. Besselink, Model reduction for delay differential equations with guaranteed stability and error bound, Automatica, vol.55, pp.132-139, 2015.
DOI : 10.1016/j.automatica.2015.02.031

R. Veltz, Interplay Between Synaptic Delays and Propagation Delays in Neural Field Equations, SIAM Journal on Applied Dynamical Systems, vol.12, issue.3, 2013.
DOI : 10.1137/120889253

URL : https://hal.archives-ouvertes.fr/hal-00850391

R. Veltz and O. Faugeras, Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations, SIAM Journal on Applied Dynamical Systems, vol.9, issue.3, pp.954-998, 2010.
DOI : 10.1137/090773611

URL : https://hal.archives-ouvertes.fr/hal-00712201

R. Veltz and O. Faugeras, Stability of the stationary solutions of neural field equations with propagation delays, The Journal of Mathematical Neuroscience, vol.1, issue.1, pp.1-28, 2011.
DOI : 10.1186/2190-8567-1-1

URL : https://hal.archives-ouvertes.fr/hal-00784425