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Abstract—In this brief note we give an answer to the fol-

lowing question: Given a multi-port, linear AC network with

instantaneous constant-power loads identify a set of active and

reactive load powers for which there is no steady-state operating

condition of the network—in this case we say that the power load

is inadmissible. The identification is given in terms of feasibility

of simple linear matrix inequalities, hence it can be easily

verified with existing software. For one- or two-port networks

the proposed feasibility test is necessary and sufficient for load

power admissibility with the test for the former case depending

only on the network data. Two benchmark numerical examples

illustrate our results.

Index Terms—Constant power loads, AC LTI circuits, existence

of equilibria.

I. INTRODUCTION

T
HIS paper explores the problem of stability of linear
time-invariant (LTI), multi-port AC circuits with instan-

taneous constant-power loads (CPLs), which model the be-
havior of some point-of-load converters. It is well-known that
CPLs have a destabilizing effect that gives rise to significant
oscillations or to network collapse, see [3], [4], [5], [7] and
the references therein for a further discussion on the subject
and [8] for a recent literature review. Clearly, a sine qua

non condition for the correct behaviour of the network is the
existence of a steady-state operating condition.

In this paper we give necessary conditions on the CPLs
active and reactive powers for existence of equilibria for
general multi-port networks. If these conditions are not sat-
isfied the loads are called inadmissible. For one- or two-port
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networks with free reactive (or active) power these conditions
are also sufficient—providing a full characterisation of the
power that can be extracted from the AC network. The
conditions are expressed in terms of feasibility of simple
linear matrix inequalities (LMIs) for which reliable software is
available. Moreover, for single-port networks the admissibility
test depends only on the network data avoiding the need for
an LMI analysis.

This work is an extension, to the case of AC networks,
of our previous results for DC networks reported in [1], see
also [7]. The extension is far from trivial because, on one
hand, the mappings associated with the quadratic equations,
whose solvability has to be studied in this problem, have
complex domain and co-domain—in contrast with the ones
of DC networks when these sets are real. Transferring these
equations to the real domain results in twice the number
of equations than unknowns stymying the application of the
classical analytical tools used for DC networks, which treat
the case of same number of equations and unknowns. On the
other hand, the characterisation of the loads in AC networks
involve its active and reactive component, whose simultaneous
treatment complicates the nature of the mathematical problem
to be solved.

The remainder of the paper is structured as follows. In
Section II the problem addressed in the paper is formulated
and the difference with the DC networks case is highlighted.
Section III contains three lemmata instrumental for the estab-
lishment of the results. Section IV gives necessary conditions
for existence of equilibria for multi-port networks. In Section
V we give necessary and sufficient conditions for the case
of one- or two-port networks. In Section VI we apply the
previous results to provide a characterization of the admissible
and inadmissible loads, while in Section VII we illustrate the
results with two benchmark examples. We wrap-up the paper
with concluding remarks and future research in Section VIII.
To enhance readability all proofs are given in appendices at
the end of the paper.

II. PROBLEM FORMULATION

A. Mathematical model of AC networks with CPLs

In this note we deal with LTI AC electrical networks with
CPLs working in sinusoidal steady-state at a frequency !0 2
R+, see Fig. 1. The description of this regime in the frequency
domain is

V (j!0) = G(j!0)I(j!0) + K(j!0), (1)
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where1 V 2 Cm and I 2 Cm are the vectors of gener-
alized Fourier transforms of the port voltages and currents,
respectively, and K 2 Cm captures the effect of the external
(current or voltage) AC sources, all evaluated at the frequency
!0. Equation (1) can also be seen as the Thevenin equivalent
model of the m-port AC linear network including the volt-
age and current sources and, then, G 2 Cm⇥m should be
interpreted as the frequency domain impedance matrix of the
network at the frequency !0.

It should be underscored that, since G(s) 2 Rm⇥m(s) is
the impedance of an LTI circuit it is strictly positive real [in
the circuit theory sense] [2], consequently it satisfies

G(j!) + GH(j!) > 0, 8! 2 R, (2)

where (·)H denotes the complex conjugate transpose.
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Fig. 1. Schematic representation of multi-port AC LTI electrical
networks with n external voltage and current sources feeding
m CPLs.

Defining the apparent power at the CPLs Si 2 C as

Si := Pi + jQi, i 2 {1, . . . m}, (3)

where Pi 2 R and Qi 2 R are the active and reactive power
at port i, respectively, the CPLs constraint the network via

Vi I⇤i = �Si, (4)

where (·)⇤ is the complex conjugate. In (4), and throughout
the rest of the paper, the qualifier i 2 {1, . . . m} is omitted.

Obviously, a necessary and sufficient condition for the
existence of a sinusoidal steady–state (at a given frequency !0)
is that the complex equations (1), (3) and (4) have a solution,
which is the question we address in this paper.

B. Compact representation and comparison with DC networks

We make the important observation that, eliminating the
voltage vector V , the system of equations (1), (3) and (4)
can be compactly represented by the set of complex quadratic
equations

fi(I) = 0, (5)

1To simplify the notation the argument j!0 is omitted in the sequel.

where the complex mappings fi : Cm ! C are defined as

fi(I) := IH �eie
>
i G
�
I + IHKiei + Si, (6)

where ei 2 Rm is the i-th Euclidean basis vector. The fact
that the mappings fi(·) have complex domain and co-domain
represents a major technical difficulty to establish conditions
for existence of solutions of (5), (6).

This situation should be contrasted with the case of DC
networks where the mappings have real domain and co-
domain. Indeed, as shown in [1], there exists a constant steady-
state if and only if the real quadratic equations #i(I) = 0 have
a real solution, with the mappings #i : Rm ! R given by

#i(I) := I>[eie
>
i G(0)]I + I>siei + Pi, (7)

where I 2 Rm are the currents, G(0) 2 Rm⇥m is the DC gain
of the impedance matrix, and si 2 R are the external (voltage
or current) DC sources.

C. Considered scenario and characterisation of the loads

Finding conditions for solvability of the equations (5),
(6), for arbitrary Pi, Qi, G and K, is a nonlinear analysis
daunting task, which is also of little practical interest. Indeed,
in practical scenarios Pi and-or Qi are fixed and we want to
find conditions on G and K such that an equilibrium exists—
interestingly, we show below that this makes the problem
mathematically tractable. The powers Pi and Qi for which an
equilibrium exists are said to be admissible, otherwise, they
are called inadmissible.

To state in a compact manner the problem formulation we
define the vectors

P := col(P1, . . . , Pm) 2 Rm

Q := col(Q1, . . . , Qm) 2 Rm

S := col(S1, . . . , Sm) 2 Cm,

which are assumed given, and we want to find conditions on
G and K that imply that P and-or Q belong to either one of
the following sets.

• PI

FAQ
⇢ Rm set of P that are inadmissible for all Q. That

is, if P 2 PI

FAQ
there is no steady-state no matter what Q

is.
• QI

FAP
⇢ Rm set of Q that are inadmissible for all P . That

is, if Q 2 QI

FAP
there is no steady-state no matter what

P is.
• SI ⇢ Rm ⇥Rm set of (P, Q) that are inadmissible. That

is, if (P, Q) 2 SI there is no steady-state.
Our first contribution is the definition of LMIs—

parameterised in P and Q—whose feasibility implies that P
and-or Q belong to either one of the aforementioned sets.

A second contribution is that, for the case of one- or two-
port networks, i.e., m  2, we provide a full characterization

of the following sets.
• PA

FSQ
⇢ Rm set of P that are admissible for some Q.

That is, if P 2 PA

FSQ
there is a Q (that can be computed)

for which there is a steady-state.
• QA

FSP
⇢ Rm set of Q that are admissible for some P .

That is, if Q 2 PA

FSP
there is a P (that can be computed)

for which there is a steady-state.
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• (For m = 1) SA ⇢ Rm ⇥ Rm set of (P, Q) that are
admissible. That is, if (P, Q) 2 SA there is a steady-state.

By full characterisation of the sets we mean that

PA

FSQ
[ PI

FAQ
= Rm (for m  2)

QA

FSP
[ QI

FAP
= Rm (for m  2)

SA [ SI = Rm ⇥ Rm (for m = 1).

In other words, that the conditions of admissibility for P or
Q are necessary and sufficient.

From the practical viewpoint the inadmissibility sets PI

FAQ

and QI

FAP
allows us to rule out “bad” Ps and Qs, respectively.

The set SI is useful in the scenario when the devices at the
ports transfer constant power with a specified power factor
PFi = Pi

Si
, in which case we fix S. Another scenario of

practical interest where the set SI is instrumental is when
P is fixed (possibly some elements zero) and some Qi are
fixed and the others are free. The main question in this case
is if some specific values of the free Qi can enlarge the set
of admissible P .

Finally, for m  2, the sets PA

FSQ
and QA

FSP
provide a

complete answer to the admissibility question when P is fixed
and Q is free and, vice versa, when Q is fixed and P is
free, respectively. Additionally, for the special case m = 1 we
provide a full characterization of the set SA. See Section V for
an illustration of these scenarios in two numerical examples.

III. THREE PRELIMINARY LEMMATA

In this section we present three lemmata that are instru-
mental to establish our results. The first lemma shows that
the m complex quadratic equations (5), (6) admit a solution
if and only if a system of 2m real quadratic equations with
2m unknowns admit a solution. Due to the fact that in AC
networks the complex power S has active P and reactive Q
components gives rise to a new situation where the number
of equations is different from the number of unknowns. The
second lemma gives necessary conditions for the solvability of
such a system of equations and is an extension of Lemma 1 of
[1] when these numbers are the same. Finally, the third lemma
shows that these conditions are also sufficient if the number
of equations is smaller than three—provided an additional
assumption is verified. The latter is always holds true in DC
networks, but it has to be verified in the AC case.

A. A real representation of (5), (6)
To streamline the presentation of the following lemma we

define the real mappings gi, hi : R2m ! R
gi(d) := d>Âid + d>b̂i + 2Pi

hi(d) := d>B̂id + d>q̂i + 2Qi, (8)

where

d :=


Re{I}
Im{I}

�
, b̂i :=


Re{K}ei

Im{K}ei

�
, q̂i :=


Im{K}ei

�Re{K}ei

�

Âi:=


eie

>
i

⇣
Re{G} + Re{G}>

⌘
eie

>
i

⇣
�Im{G} + Im{G}>

⌘

eie
>
i

⇣
Im{G} � Im{G}>

⌘
eie

>
i

⇣
Re{G} + Re{G}>

⌘
�

B̂i:=


eie

>
i

⇣
Im{G} + Im{G}>

⌘
eie

>
i

⇣
Re{G} � Re{G}>

⌘

eie
>
i

⇣
�Re{G} + Re{G}>

⌘
eie

>
i

⇣
Im{G} + Im{G}>

⌘
�
. (9)

Lemma 1: The set of complex mappings fi : Cm ! C
given in (6) verifies

gi(d) = Re{fi(I)}
hi(d) = Im{fi(I)}. (10)

Consequently,

9I 2 Cm | fi(I) = 0 , 9 d 2 R2m | gi(d) = hi(d) = 0.

⇤
The proof of this lemma is established by direct, but lengthy,

computations and is omitted for brevity.

B. Necessary condition for the solution of quadratic equations

Lemma 2: Consider the real mappings vk : Rn ! R where2

k 2 ¯̀ := {1, 2, . . . , `},

vk(x) := x>Akx + 2x>bk + ck, (11)

x 2 Rn, bk 2 Rn, ck 2 R, and Ak are symmetric n ⇥ n
matrices with n � 2 [non-necessarily equal to `]. Define the
following (n + 1) ⇥ (n + 1) real matrices

Ak :=


Ak bk

b>k ck

�
. (12)

The following implication is true:

9 tk 2 R |
X̀

k=1

tkAk > 0 ) {x 2 Rn | vk(x) = 0} = ?.

(13)
⇤

Remark 1: Lemma 2, which gives necessary conditions
for existence of solutions of ` quadratic equations with n
unknowns, is an extension of Lemma 1 of [1] where the
particular case n = ` is treated.

C. Sufficient condition for the solution of two equations

Lemma 3: Consider two mappings v1(x), v2(x) as given in
(11) and two matrices A1, A2 as in (12). Assume there exists
s1, s2 2 R, such that

s1A1 + s2A2 > 0. (14)

The following implication is true:

9 t1, t2 2 R | t1A1 + t2A2 > 0

( {x 2 Rn | v1(x) = v2(x) = 0} = ?. (15)

⇤
Remark 2: Lemma 3, which gives sufficient conditions

for existence of solutions of two quadratic equations with
n unknowns, is related with Proposition 3 of [1] where the
condition (14) is not explicitly stated because it is always
satisfied in DC networks. However, as explained in Section V,
this is not always the case for AC networks. Notice that the
need for (14) is clearly stated in [6, Theorem 2.2]. Moreover,
as indicated in Remark 1, in [1, Proposition 3] only the
particular case n = ` is treated.

Remark 3: Invoking Lemma 2 we see that the “only if”
condition (15) for two-port equations is actually and “if and
only if”—with the “if” part holding even without (14).

2In the sequel we omit the clarification that k 2 l̄.
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IV. NECESSARY CONDITIONS FOR EXISTENCE OF A
STEADY-STATE FOR m-PORT NETWORKS

A direct application of Lemmata 1 and 2 provides a way to
determine the inadmissibility of P and-or Q from the feasi-
bility of parameterised LMIs. Also, we give an interpretation
of the results in terms of the extracted active power.

A. An LMI-based inadmissibility condition

Proposition 1: Fix P, Q 2 Rm. If there exist T =
diag{ti}m

i=1 2 Rm⇥m and T̄ = diag{t̄i}m
i=1 2 Rm⇥m such

that

RP (T ) + RQ(T̄ ) > 0, (16)

where RP (T ) and RQ(T̄ ) are (2m+1)⇥(2m+1) real matrices
given by

RP (T ) :=

"
T Re{G} + Re{G}>T �T Im{G} + Im{G}>T T Re{K}
T Im{G} � Im{G}>T T Re{G} + Re{G}>T T Im{K}

Re{K}>T Im{K}>T 2P >T1m

#

(17)

and

RQ(T̄ ) :=

"
T̄ Im{G} + Im{G}>T̄ T̄ Re{G} � Re{G}>T̄ T̄ Im{K}
�T̄ Re{G} + Re{G}>T̄ T̄ Im{G} + Im{G}>T̄ �T̄ Re{K}

Im{K}>T̄ �Re{K}>T̄ 2Q>T̄1m

#
.

(18)

Then, there is no sinusoidal steady-state for the system. ⇤
Remark 4: In Proposition 1 the values of P and Q are fixed

a priori, then the positivity condition (16) is a simple LMI in
(T, T̄ ) for which reliable software is available. Otherwise, it
represents a bilinear matrix inequality in (T, T̄ , P, Q), whose
solution is far from trivial.

Remark 5: Defining3 P̃ := P>T and Q̃ := Q>T̄ it is
possible to reparameterize the matrices RP and RQ to trans-
form (16) in an LMI in (T, P̃ , T̄ , Q̃). However, as discussed at
the beginning of Subsection II-C, this formulation is of little
practical interest.

B. Bound on the extracted active power

In this subsection we assume that the active power flows
only from the network to the loads and give an upper bound
on the admissible overall extracted power.

To streamline the result we define the 2m ⇥ 2m real,
symmetric matrix

M :=


Re{G} + Re{G}> �Im{G} + Im{G}>

�Im{G}> + Im{G} Re{G} + Re{G}>
�

, (19)

that, in view of (2), is positive definite.

Proposition 2: Suppose that all CPLs extract active power
from the network, that is Pi � 0. A necessary condition for
the existence of a sinusoidal steady-state is that the overall
extracted power is upper bounded as follows

mX

i=1

Pi  1

2


Re{K}
Im{K}

�>
M�1


Re{K}
Im{K}

�
. (20)

3We thank the anonymous reviewer for this remark.

⇤
The condition above is similar to the necessary condition

for existence of a constant steady-state regime for LTI DC
networks with CPLs presented in [1, Proposition 2]. The
condition for DC networks is the existence of a positive

definite diagonal matrix T such that
mX

i=1

tiPi  1

2
(TK)>[TG(0) + G>(0)T ]�1TK. (21)

To compare this bound with (20) recall that in the DC case
!0 = 0 and the vector of external sources K is real—whose
elements were denoted as si in (7). Therefore, (20) reduces
to (21) but with T = Im. The presence of the free matrix T
makes the bound for DC networks tighter.

V. NECESSARY AND SUFFICIENT LOAD ADMISSIBILITY
CONDITIONS FOR ONE- OR TWO-PORT NETWORKS

To make the conditions for existence of a steady-state not
only necessary but also sufficient we consider in this section
the case of one- or two-port networks, i.e., m  2. In
Proposition 3 of [1] a similar scenario is treated for DC
networks. However, as indicated in Remark 2, this proposition
is inapplicable in the AC case and we need to invoke Lemma
3 that, we recall, requires the verification of condition (14).

As done in the previous section, we consider the scenarios
where P is fixed and let Q free or, vice versa, where Q is fixed
and P is free and, lastly, for the particular case of m = 1 we
take both P and Q fixed. We present first the latter case since
it is a natural complement to Proposition 1 [for m = 1].

A. Single-port networks with fixed active and reactive power

Our next result pertains to single-port networks and gives
two different necessary and sufficient conditions for a pair

(P, Q) to be admissible. The first condition is given in the
spirit of Proposition 1, that is, it relates the existence of
a sinusoidal steady-state with the feasibility of an LMI.
In addition, a radically different new condition, is given
exclusively in terms of the data of the problem.

Proposition 3: For a one-port network fix P and Q. The
following three statements are equivalent.

• The system admits a sinusoidal steady-state.
• There are no real scalars T and T̄ such that

RP (T ) + RQ(T̄ ) > 0. (22)

• The inequality

|K|2 � 2 (|S||G| + Re{S⇤G}) , (23)

holds true, where | · | is the magnitude of the complex
number. ⇤

It is important to underscore that inequality (23) is written
only in terms of the original parameters of the system, that
is G, K and S, and it does not include additional variables.
Also, this inequality reduces to the necessary and sufficient
condition for existence of equilibria for LTI DC circuits for
the case m = 1 presented in [7, Section II].
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B. Two-port networks with free active or reactive power

Suppose that the network is constrained to satisfy the active
power demand but the reactive power is unconstrained, i.e.,
the reactive power term Q can be arbitrarily assigned. Now, as
seen from (8), the quadratic mappings gi(d) are independent
of the reactive power Q and the quadratic mappings hi(d) are
independent of the active power P . Since the Q is free the
equations hi(d) = 0 are trivialised, reducing to the definition

Qi := �1

2
(d̄>B̂id̄ + d̄>ĉi),

where d̄ 2 R2m is the solution of the equations gi(d̄) = 0.
The case where the network is constrained to satisfy a given
reactive power, with unconstrained active power, is analogous
to the scenario just described and now the existence of a
sinusoidal steady-state is equivalent to the solvability of the
system hi(d) = 0.

Now, for two-port networks there are only two quadratic
equations, in which case, Lemma 3 states that their solvability
is equivalent to the feasibility of its associated LMI—provided
condition (14) is satisfied.

Proposition 4: For a two-port network, fix P and suppose Q
is unconstrained. The following two statements are equivalent.

• The network admits a sinusoidal steady-state.
• There is no diagonal matrix T such that RP (T ) > 0.

⇤
Proposition 5: For a two-port network, fix Q and suppose

P unconstrained. Assume there exists ŝ1, ŝ2 2 R, such that

ŝ1B̂1 + ŝ2B̂2 > 0. (24)

The following two statements are equivalent.
• The network admits a sinusoidal steady-state.
• There is no diagonal matrix T̄ such that RQ(T̄ ) > 0.

⇤
Remark 6: Notice from the propositions above that for the

case of fixed reactive power the additional assumption (24)
is imposed on the network. This assumption is absent when
we fix the active power—a distinction that is clarified in the
proofs. It is worth remarking that (24) is verified in both
benchmark examples given in Section VI.

Remark 7: Unfortunately, for m � 2 we do not provide
necessary and sufficient conditions for power load admissibil-
ity when both P and Q are fixed. This stems from the fact
that the proof of sufficiency relies, either on Finsler’s Lemma
as in Lemma 3 or on establishing convexity of the image of
the mapping defined by the quadratic equations as done in
[1, Proposition 3]. To the extent of our knowledge, there are
no general results concerning the (global) convexity of these
mappings nor extensions of Finsler’s Lemma when there are
more than two equations. As explained in Subsection II-B this
corresponds in the AC case to single-port networks, while in
the DC case is applicable to two-port networks.

Remark 8: A necessary and sufficient condition for power
load admissibility for two-port networks can be established
under some particular conditions. For instance, if one of
the elements of the vector K is zero and the corresponding

element of Q is zero, this condition is the feasibility of the
parameterised LMI

9⌧1, ⌧2 2 R | ⌧1F1(p) + ⌧2F2(p) > 0, 8p 2 R3,

where F1, F2 : R3 ! R are quadratic equations of the form

Fj(p) := p>↵jp + p>�j + �j , j = 1, 2,

where ↵j 2 R2⇥2, �j 2 R2 and �j 2 R are computable from
(G, K, P, Q). The precise statements and proofs are extremely
involved and may be found in an extended version of this
paper, which is available upon request to the authors.

VI. IDENTIFICATION OF THE ADMISSIBILITY AND
INADMISSIBILITY SETS FOR THE LOADS

In this section we apply the results of Propositions 1 and
3-5 to identify the sets that characterise the admissible and
inadmissible loads described in Subsection II-C.

A. Inadmissibility sets for m-port networks

The identification of the inadmissibility sets PI

FAQ
, QI

FAP

and SI follows as a direct corollary of Proposition 1. First,
notice that RP (0) = 0 and RQ(0) = 0. Therefore, setting
T̄ = 0 in (16), RP (T ) > 0 implies the non-existence of a
sinusoidal steady-state for the system—with a similar situation
for RQ(T̄ ) > 0 and T = 0. Second, matrix RP is independent
of Q and matrix RQ is independent of P . On the other
hand, matrix RP (T ) + RQ(T̄ ) is dependent on both P and
Q simultaneously.

In view of the observations above it is clear that the
following implications hold:

• 9 T such that RP (T ) > 0 ) P 2 PI

FAQ

• 9 T̄ such that RQ(T̄ ) > 0 ) Q 2 QI

FAP

• 9 T, T̄ such that RP (T )+RQ(T̄ ) > 0 ) (P, Q) 2 SI.

B. Admissibility sets for one- or two-port networks

The following characterization for the admissibility sets
described in Section II follows directly from Propositions 3-5.

• (m  2) @ T such that RP (T ) > 0 , P 2 PA

FSQ
.

• (m  2) @ T̄ such that RQ(T̄ ) > 0 , Q 2 QA

FSP
.

• (m = 1) @ T, T̄ such that RP (T ) + RQ(T̄ ) > 0 ,
(P, Q) 2 SA.

• (m = 1) (23) holds , (P, Q) 2 SA.

VII. TWO ILLUSTRATIVE EXAMPLES

A. A single-port RLC circuit

The linear RLC circuit shown in Fig. 2 has been previously
used in studies with CPLs in [1] but considering a constant

voltage source instead of a sinusoidal AC voltage source as in
the present work. If we define the voltage source as

vg =
p

2Vg cos(!0t) V, (25)

then G and K, evaluated a j!0, are given by

G =
r1 + jL1w0

(1 + r1
rc

� L1C1w2
0) + j

⇣
r1C1 + L1

rc

⌘
w0

K =
Vg

(1 + r1
rc

� L1C1w2
0) + j

⇣
r1C1 + L1

rc

⌘
w0

.
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Using the circuit parameters from Table I, and with the
particular value of rc = 5 k⌦, the above expressions result
in

G = 0.0412 + j0.0238, K = 24.3592 � j0.6219.

Since m = 1, Proposition 3 gives a full characterization of the
set SA for this circuit either in terms of the feasibility of the
LMI (22) or via the simple inequality (23).

Fig. 3 shows the feasibility and infeasibility regions on the
P -Q plane for the condition given in (22). The graph was
obtained by taking fixed values of P and Q in the discretized
set [0, 2500] ⇥ [�6000, 5000]. According to Proposition 3,
any pair (P, Q) in the infeasibility region corresponds to an
admissible pair, i.e., (P, Q) 2 SA. On the other hand, any pair
(P, Q) in the feasibility region corresponds to an inadmissible
pair, i.e., (P, Q) 2 SI.

vg

r1 L1 i

C1

+

�
v1 rc

+

�

CPL

icpl

Fig. 2. AC Linear RLC circuit with a CPL.

TABLE I
PARAMETERS FOR THE CIRCUIT IN FIGS. 2 AND 5

r1 = 0.04 ⌦ L1 = 78.0 µH C1 = 2.0 mF Vg = 24 V

r2 = 0.06 ⌦ L2 = 98.0 µH C2 = 1.0 mF !0 = 2⇡50 rad/s

�12,400 �9,400 �6,400 �3,400 �400 2,600
0

1,000

2,000

3,000

4,000

5,000

Q [var]

P
[W

]

infeasibility
feasibility

Fig. 3. Feasibility and infeasibility regions of RP (T ) +
RQ(T̄ ) > 0 for the circuit of Fig. 2.

In Fig. 4 we plot the exact boundary of existence of
solutions of fi(I) = 0—that was computed numerically—and
the feasibility boundary of the inequality (23); as predicted
by the theory they are identical and also coincide with the
boundary of Fig. 3.

�12,400 �9,400 �6,400 �3,400 �400 2,600
0

1,000

2,000

3,000

4,000

Q [var]
P

[W
]

admis. boundary of gi(d) = hi(d) = 0

feas. boundary of |K|2 � 2 (|S||G|+ <{S⇤G})

Fig. 4. Boundary of the admissibility set SA and feasibility
boundary of the inequality |K|2 � 2 (|S||G| + <{S⇤G}).

B. A two-port system

Fig. 5 shows an LTI circuit with two CPLs and the AC
source (25). In this case, the matrix G and the vector K are

G =
1

d(j!0)


n11(j!0) n12(j!0)
n21(j!0) n22(j!0)

�
,

K =
Vg

d(j!0)


((1 � !2

0L2C2) + j!0C2r2)
1

�

where

n11(j!0) = ((�C2L1r2 � C2L2r1)!
2
0 + r1)

+ j(�C2L1L2!
3
0 + (C2r1r2 + L1)!0),

n12(j!0) = n21(j!0) = r1 + j!0L1,

n22(j!0) = ((�C1L1r2 � C1L2r1)!
2
0 + r1 + r2)

+ j(�C1L1L2!
3
0 + (C1r1r2 + L1 + L2)!0),

d(j!0) = (C1C2L1L2!
4
0 + (�C1C2r1r2 � C1L1 � C2L1

� C2L2)!
2
0 + 1) + j((�C1C2L1r2 � C1C2L2r1)!

3
0

+ (C1r1 + C2r1 + C2r2)!0).

Using the circuit parameters in Table I results in

G = 10�2 ·

4.185 + j2.345 4.269 + j2.287
4.269 + j2.287 10.469 + j5.219

�
,

K =


24.526 � j0.953
24.738 � j1.433

�
.

Fig. 6 shows the feasibility and infeasibility regions on
the P1-P2 plane for the condition RP (T ) > 0. The graph
was obtained taking fixed values for P1, P2 in the discretized
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vg

r1 L1 i1 r2 L2 i2

+

�

CPL2

icpl2

C1

+

�
v1

+

�

CPL1

icpl1

C2

+

�
v2

Fig. 5. LTI AC circuit with two CPLs.

set [0, 4000] ⇥ [0, 2000]. We conclude that the blue area is
contained in the set PI

FAQ
. That is, for all values of P1 and P2

in this area the circuit of Fig. 5 does not admit a steady-state
operating regime—this independently of the values of Q1 and
Q2.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

500

1,000

1,500

2,000

P1 [W]

P
2

[W
]

infeasibility
feasibility

Fig. 6. Feasibility and infeasibility regions of RP (T ) > 0 for
the circuit of Fig. 5.

Fig. 7 shows the feasibility and infeasibility regions on
the Q1-Q2 plane for the condition RQ(T̄ ) > 0. The grid-
ding for Q1, Q2 was taken this time in the discretized set
[�5000, 10000] ⇥ [�5000, 10000]. The same conclusion as
above applies to values of Q1 and Q2 in the blue area, which
is contained in the set QI

FAP
.

�5,000 �2,500 0 2,500 5,000 7,500 10,000
�5,000

0

5,000

10,000

Q1 [var]

Q
2

[v
ar

]

infeasibility
feasibility

Fig. 7. Feasibility and infeasibility regions of RQ(T̄ ) > 0 for
the circuit of Fig. 5.

Since we are dealing with a two port system non–feasibility
of the LMI RP (T ) > 0 in Proposition 2 is necessary and
sufficient for existence of equilibria when P is fixed and Q
is free—similarly RQ(T̄ ) > 0 is the necessary and sufficient
test when Q is fixed and P is free. To corroborate this fact,
we draw with a gray line in Fig. 8 the numerically exact

boundary of existence of solutions for Re{Vi I⇤i } = �Pi, for
on the plane P1-P2. As predicted by the theory it exactly
coincides (up to some numerical glitches) with the feasibil-
ity/infeasibility boundary for the condition RP (T ) > 0, drawn
also in gray but with a circle marker.

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

500

1,000

1,500

2,000

P1 [W]

P
2

[W
]

admissibility boundary of gi(d) = hi(d) = 0
feasibility boundary of RP +RQ > 0

admissibility boundary of gi(d) = 0
feasibility boundary of RP > 0

Fig. 8. Comparison between different boundaries of admissi-
bility and feasibility for the two-port network of Fig. 5 on the
P1-P2 plane.

Analogously, the numerically exact boundary of existence
of solutions for Im{Vi I⇤i } = �Qi on the plane Q1-Q2, is
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shown in Fig. 9 to coincide with the feasibility/infeasibility
boundary for the condition RQ(T̄ ) > 0.

�5,000 �2,500 0 2,500 5,000 7,500 10,000
�5,000

0

5,000

10,000

Q1 [var]

Q
2

[v
ar

]

admissibility boundary of gi(d) = hi(d) = 0
feasibility boundary of RP +RQ > 0

admissibility boundary of hi(d) = 0
feasibility boundary of RQ > 0

Fig. 9. Comparison between different boundaries of admissi-
bility and feasibility for the two-port network of Fig. 5 on the
Q1 � Q2 plane.

It should be underscored that the admissibility region for P
and Q is not the union of their separate admissible regions.
That is, even if we take values for P and Q inside their
respective admissible regions, i.e., under the gray curves in
Figs. 8 and 9, respectively, this does not imply that the
system will have an equilibrium for these CPLs. The reason
is that such boundaries were obtained solving the real and the
imaginary part of (4) independently and not simultaneously.
The black curves with an ‘x’ marker in Figs. 8 and 9 represent
the numerically exact boundaries of existence for (4), solving
its real and imaginary parts simultaneously, and taking fixed
values of Q1 = 1000 and Q2 = 0 for the former, and
taking fixed values of P1 = 500 and P2 = 500 for the
latter. It can be observed that in both cases the admissibility
regions are reduced. However, they are always bounded by
the feasibility/infeasibility boundaries of RP (T ) > 0 and
RQ(T̄ ) > 0.

Finally, the black curves with circle marker in Figs. 8 and
9 correspond to the feasibility/infeasibility boundaries of the
LMI RP (T )+RQ(T̄ ) > 0 plotted for some fixed values of P
and Q, respectively. Although not predicted by the theory, they
coincide with the boundaries of numerically exact solution of
the quadratic equations (4) for these fixed values—see Remark
6.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We have given in this paper necessary conditions for inad-
missibility of CPLs, that is, values of their active and reactive
power for which the network does not admit a sinusoidal
steady state at a given frequency. For the case of one- or two-
port networks and free active (or reactive) power components

these conditions are also sufficient. Interestingly, for single-
port networks the admissibility condition can be checked
directly from the data of the problem, i.e., inequality (23).
Similarly to the case of DC networks studied in [1], [7] the
analysis boils down to the study of solvability of a set of
quadratic equations. In the DC case these equations define
mappings from Rm to R, while in the AC case the mappings
are from Cm to C, giving rise to a different mathematical
problem.

Current research is under way in three different directions.
• Give conditions under which the LMI tests are necessary
and sufficient as discussed in Remark 7. Also, similarly to
the third point of Proposition 3, give conditions that can be
checked directly from G, K and S. These questions are related
with the property of convexity of the image of the mappings
defined by the quadratic equations and it has been thoroughly
discussed in Section IV.A of [1]. Some encouraging results
regarding this issue have been recently found and will be
reported shortly.
• Assuming that a steady-state exists, to study its stability or
attractivity properties. This task is carried out in [1] invoking
Lyapunov’s first method. In the present case, the analysis is
much more complicated because, on one hand, the steady-
state behavior is not a constant operating point but a periodic
orbit. On the other hand, it is not clear how to characterise
the behaviour of the CPLs in the time domain.
• Extend the analysis beyond the LTI network setting
considered here. In particular, we are investigating the scenario
of switched power converters with CPLs, a case studied in [1],
[7] looking at the power balance equation.
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APPENDIX

A. PROOF OF LEMMA 2
To streamline the presentation we define the set

Ev := {x 2 Rn | vk(x) = 0},

where vk(x) is defined in (11).
The proof of the implication (13) is established by contra-

position. Therefore, suppose that Ev is not empty. We will then
prove that there are no real numbers tk such that

X̀

k=1

tkAk > 0. (26)

Let us take x 2 Ev and tk arbitrary. Since vk(x) = 0, then
tkvk(x) = 0. This implies that

X̀

k=1

tkvk(x) = 0. (27)

Define the vector z := col(x, 1) 2 Rn+1. Then, using (12),
equation (27) can be represented in matrix form as

z>
 
X̀

k=1

tkAk

!
z = 0. (28)

Since z is a non-zero vector, (28) contradicts inequality (26)
for an arbitrary selection of tk, completing the proof.

B. PROOF OF LEMMA 3
The proof invokes Finsler’s Lemma, in particular Statement

I of the Main Theorem in [9] that, using the notation of Lemma
3, reads as follows:

9 t1, t2 2 R | t1A1 + t2A2 > 0

, {⌘ 2 Rn+1 | ⌘>A1⌘ = ⌘>A2⌘ = 0} = {0}, (29)

where A1, A2 are given by (12). Notice that this theorem
pertains to homogeneous quadratic forms while, because of
the presence of the terms 2x>bk +ck, the equations of interest
to us, e.g., (11), are non-homogeneous.

To adapt Finsler’s Theorem to handle this case we define
two real mappings w1, w2 : Rn ⇥ R ! R

w1(x, y) := x>A1x + 2x>b1y + c1y
2

w2(x, y) := x>A2x + 2x>b2y + c2y
2

and the set

Ew := {(x, y) 2 Rn ⇥ R | w1(x, y) = w2(x, y) = 0}. (30)

First, we will prove that under condition (14), the following
equivalence holds:

Ev = {x 2 Rn | v1(x) = v2(x) = 0} = ? , Ew = {(0, 0)}.
(31)

()) The proof is by contraposition, therefore, we suppose
there is a non-zero vector (x̄, ȳ) 2 Ew. Consider first the
case when ȳ = 0, then x̄ 6= 0 necessarily. Since w1(x̄, 0) =
w2(x̄, 0) = 0 This implies that

x̄>A1x̄ = x̄>A2x̄ = 0.

Let s1, s2 2 R arbitrary. Then, the following expression holds

x̄> (s1A1 + s2A2) x̄ = 0. (32)

However, this contradicts (14). Assume now that ȳ 6= 0. In
this case it follows that x̄

ȳ 2 Ev . Hence, Ev 6= ?, completing
the proof.
(() Once again by contraposition. Hence, suppose that
Ev 6= ? and take x̄ 2 Ev , then (x̄, 1) is a non-zero vector in
Ew and, consequently, Ew 6= {0}, completing the proof.

We are in position now to prove the implication (15).
Suppose Ev = ?. Then, the equivalence (31) implies that
Ew = {(0, 0)}. Recalling that

w1(x, y) = ⌘>A1⌘, w2(x, y) = ⌘>A2⌘

with ⌘ := (x, y), Finsler’s Lemma ensures the existence of
t1, t2 2 R such that

t1A1 + t2A2 > 0. (33)

Hence, the lemma is proved.

C. PROOF OF PROPOSITION 1
Define the following (2m + 1) ⇥ (2m + 1) real matrices

Âi :=


Âi b̂i

b̂>i 2Pi

�
, B̂i :=


B̂i q̂i

q̂>i 2Qi

�
. (34)

Notice that

gi(d) =
⇥

d> 1
⇤
Âi


d
1

�

hi(d) =
⇥

d> 1
⇤
B̂i


d
1

�
. (35)

Suppose there exist ti, t̄i such that4

mX

i=1

tiÂi +
mX

i=1

t̄iB̂i > 0.

Referring to Lemma 2 with ` = 2m, x = d and

v1 = g1, . . . , vm = gm, vm+1 = h1, . . . , v2m = hm,

we conclude that there are no solutions for the system

gi(d) = hi(d) = 0.

This implies that there is no sinusoidal steady-state for the
network. The proof is completed noting that

mX

i=1

tiÂi = RP (T ),
mX

i=1

t̄iB̂i = RQ(T̄ ). (36)

D. PROOF OF PROPOSITION 2
Consider the matrix RP , given in (17), for T = Im. Notice

that the uppermost corner of RP is given by M , defined in
(19). Since M > 0 we have that RP > 0 if and only if the
Schur complement of M is positive. The proof is completed
noting that the latter is equivalent to (20).

4We introduced the symbol t̄i for ease of reference in the subsequent
material.
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E. PROOF OF PROPOSITION 3
The equivalence between the first two statements is a direct

corollary of the last statement in Lemma 3, which states that
for ` = 2 (that is m = 1)

g1(d) = h1(d) = 0 , 9 t1, t̄1 | t1A1 + t̄1B1 > 0.

The proof is completed invoking the identity (36) with T =
t1, T̄ = t̄1.

We now proceed to show the equivalence with the last
statement. Towards this end, let us re-write model of the
network in complex form as

G|I|2 + I⇤K + S = 0. (37)

Inequality (2) implies that G 6= 0. Divide (37) by G and split
it into real and imaginary parts. Then, the complex equation
(37) is equivalent to

x2 + y2 + ax + by + P 0 = 0 (38)
bx � ay + Q0 = 0 (39)

where
K

G
:= a + jb,

S

G
:= P 0 + jQ0, I := x + jy.

Let us suppose that a 6= 0, then from (39) we can get y as

y =
bx + Q0

a
. (40)

Substituting the above value for y into (38) we get the
following quadratic equation for x

(a2 + b2)x2 +
⇥
2bQ0 + a(a2 + b2)

⇤
x+

�
Q02 + abQ0 + a2P 0� = 0.

(41)

This equation has a real solution if and only if its discriminant
is non-negative, that is, if and only if
�
2bQ0 + a(a2 + b2)

�2 � 4(a2 + b2)(Q02 + abQ0 + a2P 0).

If we develop the left and right-hand side expressions, then
the inequality above is equivalent to

4b2Q02 + 4abQ0(a2 + b2) + a2(a2 + b2)2

�
4a2Q02 + 4b2Q02 + 4abQ0(a2 + b2) + 4a2P 0(a2 + b2)

which can be written in a simplified form as

(a2 + b2)2 � 4P 0(a2 + b2) � 4Q02 � 0.

This expression holds if and only if

(a2 + b2) � 2(P 0 +
p

P 02 + Q02). (42)

Let us note that

a2 + b2 =
|K|2

|G|2 ,

P 0 =
PRe{G} + QIm{G}

|G|2 ,

Q0 =
QRe{G} � P Im{G}

|G|2 .

Then, inequality (42) can be equivalently written in the orig-
inal coefficients as in in (23).

Now let us suppose that a = 0. If b 6= 0, then from (39) we
have that

x = �Q0

b
.

If we substitute this value of x into (38), we get a quadratic
equation for y given by

b2y2 + b3y +
�
Q02 + b2P 0� = 0.

This equation has a real solution if and only if its discriminant
is non negative, that is if and only if

b6 � 4b2
�
Q02 + b2P 0� � 0.

This inequality is equivalent to
�
b2
�2 � 4P 0(b2) � 4Q02 � 0,

which holds if and only if

b2 � 2
⇣
P 0 +

p
P 02 + Q02

⌘
.

Clearly, the above expression corresponds with (42) by taking
a = 0.

To conclude the proof, let us suppose that a = 0 and b = 0
simultaneously. In this case, system conformed by equations
(38) and (39), has a solution if and only if Q0 = 0 and P 0  0.
This last case has little practical relevance since if a = 0 and
b = 0 simultaneously, then K = 0, which would correspond
to a single-port network without a source.

D. PROOFS OF PROPOSITIONS 4 AND 5
The proofs follow as direct corollaries of Lemma 3. First,

notice that

g1(d) = g2(d) = 0 , 9 t1, t2 such that t1A1 + t2A2 > 0

h1(d) = h2(d) = 0 , 9 t̄1, t̄2 such that t̄1B1 + t̄2B2 > 0,

and

t1A1 + t2A2 = RP (diag{t1.t2})

t̄1B1 + t̄2B2 = RQ(diag{t̄1.t̄2}).

It only remains to verify (14). For Proposition 4 we have

Â1 + Â2 = M,

with M , given in (19), being positive definite. Therefore,
(14) is satisfied with s1 = s2 = 1. On the other hand, for
Proposition 5 it is not clear when there exists ŝ1, ŝ2 2 R such
that

ŝ1B̂1 + ŝ2B̂2 > 0,

with B̂1, B̂2 given in (9). Therefore, it is necessary to impose
assumption (24).
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Robert Griñó (M’99, SM’12) received the M.Sc.
degree in electrical engineering and the Ph.D. degree
in automatic control from the Universitat Politècnica
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Universitat Politècnica de Catalunya, where he has
been an Associate Professor since 1998. His research
interests include digital control, nonlinear control,

stability theory and control of power electronics converters. Dr. Griñó is an
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