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Abstract

Parameter estimation-based observers are a new kind of state reconstruction methods where the state
observation task is translated into an on-line parameter estimation problem. A key step for its appli-
cation is the transformation of the system dynamics into a particular cascade form, which involves the
solution of a partial differential equation that, moreover, should satisfy some injective requirement. In
this note we use a recently proposed technique of signal injection to generate new outputs and simplify
these tasks. In this way, we make this observer applicable to a wider class of nonlinear systems—even
with indistinguishable states. The application of the proposed approach is illustrated with the design
of a novel sensorless controller for magnetic levitation systems.
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1. Introduction

In the last three decades we have witnessed rapid progress of nonlinear observer theory in the control
literature. Recent reviews may be found in [4, 5, 10]. The first systematic observer theory for nonlinear
systems was developed in [18]. In this seminal work, a nonlinear state transformation to obtain a
linear system up to an output injection was proposed. The approach has some extremely restrictive
conditions, stymying its applicability for most physical systems. Since then various approaches to
design observers for nonlinear systems have been pursued, e.g., based on nonlinearity domination via
high-gain [11, 8], on the generation of invariant manifolds [4, 14], on passivity and dissipativity theory
[3] and on optimization theory [1]. Particular attention has been given to the Kazantzis-Kravaris-
Luenberger (KKL) observer [15], which is the extension of Luenberger’s cornerstone work [19] for
linear time-invariant (LTI) systems to the nonlinear case. For autonomous systems, KKL observers
have been systematically studied from both theoretical and numerical aspects [17, 2]. However, the
existence of KKL observer and its design procedure for nonlinear systems with inputs are, to the best
of our knowledge, still open problems.

In [22] a novel class of observers for nonlinear control systems, called parameter estimation-based
observers (PEBOs), was proposed. The distinguishing feature of PEBOs is that it formulates the
observer design problem as a parameter estimation problem. A key step for the application of PEBO
is the transformation of the system dynamics into a particular cascaded form, a task that requires
the solution of a partial differential equation (PDE). Moreover, this solution should define an injective
map and an associated (consistent) parameter identification task has to be solved. In this note we
propose to use the signal injection technique introduced in [6] to generate new “virtual outputs” that,
included in the PEBO design, provide additional degrees of freedom to satisfy the three aforementioned
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requirements. The inclusion of probing signals for observer and controller design is standard practice
in many practical applications like sensorless control of electrical machines [13], vibration control [20]
and active islanding detection schemes [12]. It is also routinely used in parameter identification and
adaptive control to achieve the persistency of excitation condition required for parameter convergence
and control robustification [25].

To apply the signal injection technique in the PEBO scenario it is necessary to extend the results
of [6] in three directions.

(i) Extend the theory for scalar systems to the case multi-input-multi-output (MIMO) systems.

(ii) Refine the averaging analysis considering the use in the control of the estimated virtual output
instead of the virtual output itself.

(iii) Redesign the estimator of an alternative virtual output instead of the one obtained for the nominal
system.

Another contribution of the paper is to propose a technique to solve the PDE using mappings pseudo
inverses and Poincare’s Lemma. This new procedure, which translates the problem of solution of the
PDE into the solvability of a set of (nonlinear) algebraic equations and an, easily verifiable, integrability
condition—both steps some free mappings—is more systematic and provides additional degrees of
freedom to solve the problem.

The remaining of paper is organized as follows. In Section 2, a brief review of PEBO is given.
The main idea and a motivating example are presented in Section 3. Sections 4 and 5 describe the
use of signal injection in PEBO, while in Section 6 we discuss the new technique to solve the PDE.
Examples that illustrate the main results of the paper as given in Section 7. Section 8 contains the con-
clusion and future work. To enhance readability the technically involved proofs are given in appendices.

Notations. O = col(0, . . . , 0). 1 = col(1, . . . , 1). A† denotes the generalized inverse of the matrix A.

All the functions are supposed smooth enough. Given a function f : Rn → R we define ∂if :=
∂f
∂xi

and the differential operator ∇f :=
(
∂f
∂x

)>
. For a mapping F : Rn → Rm we define the ij-th element

of its n×m (transposed) Jacobian matrix as (∇F )ij :=
∂Fj
∂xi

. O is the “uniform big O” symbol, that

is, f(z, ε) = O(ε) if and only if |f(z, ε)| ≤ Cε for a constant C independent of z and ε.

2. Parameter Estimation-based Observers

To apply the signal injection technique it is necessary to develop a slight variation of the main
result of [22], where the full state—instead of part of it as done in [22]—is observed. For the sake of
completeness we give also the proof of this result.

Proposition 1. Consider the nonlinear system

ẋ = f(x) + g(x)u

y = h(x)
(1)

where x ∈ Rn, y ∈ Rp, u ∈ Rm and g(x) is full rank, together with the following assumptions.

(A1) (PDE solvability) There exist mappings

φ : Rn → Rnz , β : Rp × Rm → Rnz ,

with nz ≥ n− p satisfying the PDE

∇>φ(x)
[
f(x) + g(x)u

]
= β

(
h(x), u

)
(2)
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(A2) (Left invertibility) There exists a mapping φL : Rnz × Rp → Rn such that

φL(φ(x), h(x)) = x. (3)

(A3) (Consistent identification) There exists mappings

M : Rnζ × Rnz × Rp × Rm → Rnζ , N : Rnζ × Rnz × Rp × Rm → Rnz ,

with nζ ∈ N+ such that the parameter estimator

ζ̇ = M(ζ, z, y, u) (4)

ϑ̂ = N(ζ, z, y, u) (5)

generates a consistent estimate for the nonlinear regression model

ż = β(y, u) (6)

y = h(φL(z + ϑ, y)), (7)

where ϑ ∈ Rnz is a vector of constant, unknown parameters. That is, all signals are bounded and

lim
t→∞
|ϑ̂(t)− ϑ| = 0.

Under these assumptions, the PEBO
x̂ = φL(z + ϑ̂, y)

verifies limt→∞ |x̂(t)− x(t)| = 0.

Proof 1. Defining the function z = φ(x), it follows from (2) that

ż = β(h(x), u). (8)

This, together with (6) and an integration, implies that

z(t)− z(t) = ϑ, ∀t ≥ 0, (9)

where ϑ := z(0)− z(0) is the integration constant. Now, Assumption (A2) ensures that

x = φL(z, y) = φL(z + ϑ, y),

where we have used (9) to obtain the second identity. Replacing the expression above in the output
map yields (7). The proof is completed invoking Assumption (A3) and defining the state estimate x̂
by replacing ϑ̂ in the place of ϑ in the equation above. ���

3. Main Idea and Motivating Example

Clearly, the design of the PEBO is simplified if additional signals are available for measurement.
The main contribution of the paper is to propose a procedure—based on the signal injection technique
of [6]—to generate an approximation of the signal yv = hv(x) ∈ Rp, where we defined

hv(x) := ∇>h(x)g(x)b (10)

with b ∈ Rm a free vector utilized in the scaling of the signal injections.
To motivate the addition of this virtual output signal in the context of PEBO we present in this

section its application for a benchmark example. Namely, a magnetic levitation system consisting of
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Figure 1: Levitated ball

an iron ball of mass m in a vertical magnetic field as shown in Fig. 1. Assuming the flux, denoted x1,
and the current y are related by

x1 =
k

1− x2
y

where k is a positive constant, x2 ∈ (−∞, 1) is the distance between the centre of the ball and
its nominal position and taking as state vector x = col(x1, x2,mẋ2), the dynamics of the system is
described by (1) with

f(x) =

 − r
k (1− x2)x1

x3
m

1
2kx

2
1 −mg0

 , g =

 1
0
0

 , h(x) =
1

k
(1− x2)x1, (11)

where u is the voltage, r is the inductors resistance and g0 denotes the acceleration due to gravity—see
[26] for additional details of the model.

It is clear that the observation of the state from the measurement of y seems a daunting task. Our
objective is to design a PEBO assuming measurable the additional signal

yv := hv(x) = ∇>h(x)g =
1

k
(1− x2). (12)

The first step is to solve the immersion PDE, which in this case becomes

∇>φ(x)[f(x) + gu] = β
(
h(x), hv(x), u

)
.

Taking nz = 1 a feasible solution is

φ(x) = x3, β(y, yv, u) =
1

2k

(
y

yv

)2

−mg0.

The second step is the definition of the left inverse mapping, which can be chosen as1

φL(x3, y, yv) = col

(
y

yv
, 1− kyv, x3

)
.

Finally, we proceed to determine the regression model and propose a parameter estimator. The dynamic
part of the regression model (6)

ż =
1

2k

(
y

yv

)2

−mg0. (13)

1Notice the addition of the new argument yv in the definitions of β and φL.
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However, h and hv depend only on x1, x2 and the first two components of φL are also independent of
x3—that we recall is φ(x) and it equals z + ϑ—consequently the composed mappings

y = h(φL(z + ϑ, y, yv))

yv = hv(φ
L(z + ϑ, y, yv))

are independent of ϑ, therefore, they cannot be used to pose the parameter estimation problem.
To obtain a regression model we use the dynamic relation ẋ2 = 1

mx3 and express it as

mẋ2 = z = (z + ϑ) .

Applying the simple LTI filter 1
αp+1 , with p := d

dt , α > 0, to this equation yields the simple relation

Y = ϑ+ εt (14)

where we defined the measurable signals

Y :=
p

αp+ 1
mx̂2 −

1

αp+ 1
z, (15)

εt is an exponentially decaying term stemming from the filters initial conditions with x̂2 := 1 − kyv.
Thus a parameter estimator is designed as

˙̂
ϑ = γ(Y − ϑ̂) (16)

with γ > 0 the adaptation gain. Replacing (14) in (16), and defining the parameter error ϑ̃ := ϑ̂− ϑ,
we get the error equation

˙̃
ϑ = −γϑ̃+ γεt,

that, clearly, converges to zero exponentially fast.
The derivations above are summarised in the proposition below.

Proposition 2. Consider the system (1), (11) with additional measurable signal (12). The PEBO
(13), (15), (16) with

x̂ = col

(
y

yv
, 1− kyv, z + ϑ̂

)
ensures limt→∞ |x̂(t)− x(t)| = 0 (exponentially fast).

4. Generation of Virtual Outputs via Signal Injection

In [6] a novel procedure to generate alternative virtual outputs via signal injection and filtering
was proposed. In words, the idea is to add to the control signal a high-frequency small amplitude
periodic signal that induces an oscillation in the signal ∇h>(x)g(x)b that can be recovered filtering
the plant output. Under the standing assumption that there exists a dynamic exponentially stabilising
controller with inputs y and ∇>h(x)g(x)b it is shown that the latter signal can be reconstructed with
an accuracy O(ε), where ε is the period of the probing signal. In [6] it is then proposed to replace
the signal ∇>h(x)g(x)b by its estimate in the controller and it is shown that the trajectories of the
closed-loop system converge to a neighbourhood of the equilibrium with radius O(

√
ε).

In this section we present the extensions of the results of [6] indicated in points (i)-(iii) of Section
1. Then, we investigate how to use the virtual outputs to simplify the design of PEBO, in both critical
steps of solving the PDE (2) and ensuring the left invertibility of its solution.
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4.1. Assumption for the ideal system

Similarly to [6], the following technical assumption regarding the global exponential stabilizability
of the system (1) via dynamic feedback of the output y and the virtual output yv = hv(x) defined in
(10) is needed for further developments. The qualifier “globally” can be removed at the prize of doing,
throughout the paper, a far more cumbersome local analysis—we avoid these complications for the
sake of clarity.

Assumption 1. There exists a dynamic controller of the form

u = β(xc, y, yv)

ẋc = F (xc, y, yv)
(17)

with xc ∈ Rnxc , such that the zero equilibrium2 of the system

ẋ = f(x) + g(x)β(xc, h(x), hv(x))

ẋc = F
(
xc, h(x), hv(x)

) (18)

is globally exponentially stable.

To estimate the signal yv we inject to the input of the plant a small amplitude, high-frequency
signal

sb := s(
t

ε
)b, (19)

where s(·) is a 1-periodic, zero mean function and b is a free, m-dimensional, constant vector that
“scales” the action of the probing signal for the various input channels. It is necessary, then, to
prove that if we use this estimate, denoted ŷv, in the control law (17) with the probing signal sb the
trajectories of the closed-loop system will be “close” to those of the ideal system (18). More precisely,
we need to prove that the error between the actual systems trajectories and the trajectories of the
averaged ideal system is O(ε)—see [24] for details on this kind of analysis.

4.2. Behaviour of the perturbed system

To carry out the aforementioned task we first analyse the trajectories of the closed-loop system
when, instead of yv, we use in the controller a signal y̆v verifying

y̆v := hv(x) + εω(x, t) + εκ(x,
t

ε
) +O(ε2) (20)

where ω is a small perturbation verifying ‖ω(·, t)‖∞ ≤ k1, and κ is bounded, has zero mean and is
1-periodic with respect to its second argument.3 We now consider the dynamic feedback law

u =β(xc, y, y̆v) + sb

ẋc =F (xc, y, y̆v)
(21)

where sb is given in (19), yielding the closed-loop system

ẋ = f(x) + g(x)β(xc, h(x), y̆v) + s
( t
ε

)
g(x)b

ẋc = F (xc, h(x), y̆v).
(22)

2Without loss of generality it is assumed in all cases that the equilibrium of interest is the zero equilibrium.
3We will show below that it is possible to generate an estimate ŷv verifying the condition (20) assumed for y̆v.
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Define a fast time scale τ = t
ε . The averaged system of (22) is(

˙̄x
˙̄xc

)
=

(
f(x̄) + g(x̄)β(x̄c, h(x̄), hv(x̄))

F (x̄c, h(x̄), hv(x̄))

)
+ ε

(
g(x̄)∂3β(x̄c, h(x̄), hv(x̄))
∂3F (x̄c, h(x̄), hv(x̄))

)
ω(x̄, ετ). (23)

We have the following Lemma, whose proof is given in Appendix A.

Lemma 1. Consider the closed-loop system (22) and its averaged behaviour (23). For all initial
conditions (x(0), xc(0)) ∈ Rn × Rnxc , there exists ε∗ > 0, such that ∀ε ∈ (0, ε∗],(

x
xc

)
=

(
x̄
x̄c

)
+ εS(

t

ε
)

(
g(x̄)b

0

)
+O(ε2) (24)

is satisfied where

S(µ) :=

∫ µ

0
s(τ)dτ −

∫ 1

0

∫ σ

0
s(τ)dτdσ.

Moreover, the trajectories of the closed-loop system enter in finite time an invariant set, which is a
neighbourhood of the equilibrium with radius O(

√
ε).

4.3. Estimation of yv

We are now in position to design an estimator ŷv for the virtual output. It is worth pointing out
that in [6] the estimator is designed for the virtual output of ideal system (18), that is, ignoring the
perturbation term ∆(χ̄, t) in (A.2). This estimate is clearly not useful for observer design, therefore,
we propose to design the estimator for the practically realisable system (22). This result is contained
in the proposition below whose proof is given in Appendix B.

Proposition 3. Suppose Assumption 1 holds and consider the dynamics of the system (22). Define
the estimator of the virtual output yv as

ŷv(t) =
1

ε

1
nε

∫ t
t−nε

(
y(µ)− ̂̄y(µ)

)
S
(µ
ε

)
dµ

1
nε

∫ t
t−nε S

2(µε )dµ
,

ˆ̄y(t) =
1

nε

∫ t

t−nε
y(µ)dµ.

(25)

The estimation error ŷv − yv is O(ε). More precisely,

ŷv(t) = yv(t) + εp−1 ·V(t) +O(ε2) · 1p, (26)

where p is a constant independent of ε and V(t) is a bounded function whose norm is also independent
of ε. Therefore, the estimate ŷv also verifies (20) with κ equal to zero.

The following is an immediate corollary of Lemma 1 and Proposition 3.

Corollary 1. Suppose Assumption 1 holds and consider the dynamics of the system (1) in closed-loop
with the control

u =β(xc, y, ŷv) + sb

ẋc =F (xc, y, ŷv)
(27)

with ŷv generated via (25). For all initial conditions (x(0), xc(0)) ∈ Rn × Rnxc , there exists ε∗ > 0,
such that ∀ε ∈ (0, ε∗] the trajectories of the closed-loop system enter in finite time an invariant set,
which is a neighbourhood of the equilibrium with radius O(

√
ε).
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4.4. Relaxing the exponential stabilization requirement of Assumption 1

The following Proposition, whose proof is given in Appendix C, relaxes the exponential stabilization
assumption to only asymptotic stabilization.

Proposition 4. Corollary 1 holds true even if we replace the “exponentially” qualifier in Assumption
1 by “asymptotically”, with the only exception that the radius of the neighbourhood of the equilibrium
to which the trajectories converge is D(ε), with D a class K function.

5. Using yv to Relax the Assumptions of PEBO

Availability of the virtual output yv—obtained via signal injection—allows us to relax the three
assumptions imposed in Proposition 1 for the design of a PEBO.

Before presenting the new assumptions we notice that in the definition of yv (10) we have the free
m-dimensional vector b that should be added as an additional degree of freedom in the three new
assumptions below—this clarification is omitted for brevity. Also, to avoid cluttering the notation
in all mappings we have used the same symbols in both sets of assumptions, only modifying their
arguments.

(A1’) (PDE solvability) There exist mappings

φ : Rn → Rnz , βf : Rp × Rp → Rnz , βg : Rp × Rp → Rnz×m

with nz ≥ n satisfying the PDE

f>(x)∇φ(x) = β>f
(
h(x), hv(x)

)
g>(x)∇φ(x) = β>g

(
h(x), hv(x)

)
(28)

(A2’) (Left invertibility) There exists a mapping φL : Rnz × Rp × Rp → Rn such that

φL(φ(x), h(x), hv(x)) = x. (29)

(A3’) (Consistent identification) There exists mappings

M : Rnζ × Rnz × Rp × Rp × Rm → Rnζ , N : Rnζ × Rnz × Rp × Rp × Rm → Rnz ,

with nζ ∈ N+ such that the parameter estimator

ζ̇ = M(ζ, z, y, yv, u) (30)

ϑ̂ = N(ζ, z, y, yv, u) (31)

generates a consistent estimate for the nonlinear regression model

ż = β(y, yv, u) (32)

y = h(φL(z + ϑ, y, yv)), (33)

where
β(y, yv, u) := βf (y, yv) + βg(y, yv)u.

Notice that—exploiting the affine dependence on u of the PDE (2)—we have split it into two parts in
Assumption (A1’). It is interesting to observe also that the addition of the virtual output considerably
simplifies the solution of the second PDE in (28). Indeed, we recall that it can be written in the form

∇>φ(x)g(x) = βg
(
h(x),∇>h(x)g(x)b

)
(34)

where we underscore the presence of the matrix g(x) on both sides of the equation. Moreover, the free
vector b can be selected to simplify the solution, a fact that is illustrated in the example of Subsection
7.2.
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6. A procedure to solve the PDE (28)

In this section we show that the solution of the key PDE (28) can be translated into the solvability
of a set of (nonlinear) algebraic equations and an, easily verifiable, integrability condition—both steps
disposing of several free mappings.

Decomposing the vectors φ(x) and βf (h(x), hv(x)
)

into its nz components φi(x) and βf,i(h(x), hv(x))
the first equation of (28) can be equivalently written as

f>(x)∇φi(x) = βf,i
(
h(x), hv(x)

)
, i = 1, . . . , nz. (35)

The general solution of these equations is of the form

∇φi(x) =
(
f>(x)

)†
βf,i
(
h(x), hv(x)

)
+
[
I −

(
f>(x)

)†
f>(x)

]
P(x) =: Φf

i (x) (36)

with P : Rn → Rn is a free mapping and we recall that (·)† stands for the pseudo-inverse.
Similarly, denoting with β>g,i

(
h(x), hv(x)

)
the i-th row of βg

(
h(x), hv(x)

)
, the second equation of

(28) can be written element-by-element as

g>(x)∇φi(x) = β>g,i
(
h(x), hv(x)

)
, i = 1, . . . , nz (37)

whose solution is

∇φi(x) =
(
g>(x)

)†
β>g,i
(
h(x), hv(x)

)
+
[
I −

(
g>(x)

)†
g>(x)

]
Q(x) =: Φg

i (x) (38)

with Q : Rn → Rn a free mapping.
For the right hand sides of (36) and (38) to qualify as solutions of the PDE it is necessary to impose

the following two additional constraints.

(C1) Both expressions are equal, that is,

Φf
i (x) = Φg

i (x), i = 1, . . . , nz. (39)

(C2) The mappings Φf
i (x) are gradient vector fields4, that is

∇Φf
i (x) =

(
∇Φf

i (x)
)>
, i = 1, . . . , nz. (40)

The derivations above established the following proposition.

Proposition 5. For all mappings

βf,i : Rp × Rp → R, βg,i : Rp × Rp → Rm, P : Rn → Rn, Q : Rn → Rn

verifying (39) and (40), where Φf
i (x) and Φg

i (x) are defined in (36) and (38), respectively, the mapping

φ(x) =

∫ 1

0
(Φf (sx))>xds

is a solution of the PDE (28).

7. Examples

In this section we give several examples that illustrate the use of the various propositions above.

4This condition stems from the well-known Poincare’s Lemma.
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7.1. Solving the PDE for an indistinguishable system

Consider the system

ẋ1 = x2 + u

ẋ2 = x1

y = x21.

Clearly, y cannot help distinguish between ±x1. This system is of instantaneous indistinguishability
[5]. Some simple computations show that hv(x) = 2x1 and, using this virtual output, the PDE (28)
admits the solution

φ(x) = x2, βf (h(x), hv(x)) =
1

2
hv(x), βg(h(x), hv(x)) = 0.

7.2. Solving the PDE for a port-Hamiltonian system

Consider the port-Hamiltonian system [27]

ẋ = F (x)∇H(x) + g(x)u

y = xa

with x := col(xu, xa) ∈ Rn, xu ∈ Rn−m, xa ∈ Rm, u ∈ Rm, H : Rn → R the systems Hamiltonian,
F : Rn → Rn×n verifies

F (x) + F>(x) ≤ 0,

and

g(x) =

(
0

ga(x)

)
.

The virtual output is, clearly, yv = ga(x)b. To streamline the next proposition, and consistent with
the definition of x lets partition F (x) as

F (x) =

(
Fuu(x) Fua(x)
Fau(x) Faa(x)

)
.

Proposition 6. If there exist constant matrices b ∈ Rm, Pu ∈ Rn×(n−m), Pa ∈ Rn×m and a mapping
T : Rm × Rm×m → Rn satisfying the algebraic equation

T (xa, ga(x)b) =
(
PuFuu(x) + PaFau(x)

)
∇xuH(x) +

(
PuFua(x) + PaFaa(x)

)
∇xaH(x), (41)

then the PDE (28) admits a solution

φ(x) = Puxu + Paxa

βf (xa, ga(x)b, u) = T (xa, ga(x)b)

βg(xa, ga(x)b, u) = Paga(x).

Proof 2. The proof is established using the virtual output and differentiating φ(x).
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Figure 2: Two tank system

7.3. Application to a two-tank system

In this subsection, a two-tank system is utilized to verify the procedure to solve the PEBO PDE,
proposed in Section 6. Consider the two-tank system depicted in Fig 2. As shown in [7] the dynamics
is described by (1) with

ż =

− a1
A1

√
z1 + a2

A1

√
z2

− a2
A2

√
z2

0

+

 1
A1
z3

1
A2

(1− z3)
0

u, y = z1

where the states z1, z2 ∈ R+ represent the water level in the lower and upper tank, the constant
z3 ∈ [0, 1] is the unknown valve parameter, with the extreme values corresponding to fully open and
closed, and all the parameters are positive constants.

The virtual output is hv(z) = z3
A1
. To simplify the dynamics we introduce the change of coordinates

x =

 A1z1 +A2z2
z2
z3

 ,

for which the dynamics are given by

ẋ1 = −a1
√
y + u

ẋ2 =
a2
A2

√
x2 +

1

A2
(1− x3)u

ẋ3 = 0,

where, with some abuse of notation, we have written the first term in the right hand side of the x1
dynamics in terms of y(= z1). We have the following proposition.

Proposition 7. A family of solutions of the PDE (28) for the two-tank system dynamics are given by

φ(x) = γ1(x3)x1 + γ2(x3) (42)

β(y, yv) = γ1(A1yv)(−a1
√
y + u). (43)

with γ1, γ2 : R+ → R free functions.
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Proof 3. The PDEs (28) take the form

∇x1φ(x)(−a1
√
y) +∇x2φ(x)(

a2
A2

√
x2) = βf (y, yv)

∇x1φ(x) +∇x2φ(x)(
1

A2
(1− x3)) = βg(y, yv).

From the equations above we conclude that φ cannot depend on x2 and its dependence with respect
to x1 should be linear. On the other hand, it can depend on x3 via arbitrary functions. Replacing this
facts in the equations above denied the functions βf (y, yv) and βg(y, yv).

The obtained solution is left invertible with

x1 =
φ(x)− γ2(A1yv)

γ1(A1yv)

x2 =
φ(x)− γ2(A1yv)

γ1(A1yv)A2
− A1y

A2

x3 = A1yv.

Clearly, the PDE solution is left invertible when γ1 6= 0 for all x.

7.4. Simulation results of the magnetic levitation system (cont’d)
In this subsection we present some simulation results of the magnetic levitation system studied in

Section 3. The system is placed in closed-loop with the full state-feedback asymptotically stabilising
passivity-based controller proposed in [23], where the states are replaced by the estimates generated
via PEBO with signal injection.

The control law is given by

u = ry +KP

(
1

a
(x̂1 −

√
2kmg0) + x̂2 − x2∗

)
− α

m
x̂3 −

r

a

(
1

2k
x̂21 −mg0

)
+ s

(
t

ε

)
where x2∗ ∈ (−∞, 1) is the desired position of the ball and the PEBO with virtual output is generated
by

ż =
1

2k

(
y

ŷv

)2

−mg0

Y =
p

αp+ 1
mx2 −

1

αp+ 1
z

˙̂
ϑ = γ(Y − ϑ̂)

x̂ = col

(
y

ŷv
, 1− kŷv, z + ϑ̂

)
with ŷv obtained from (25).

The simulation scenario was as follows: all parameters of the system are set equal to one, the
controller gains were KP = 12, a = 1, b = 1, α = 4.5 and γ = 1. The desired position is x2∗ = 0.5,
the initial values are given as x(0) = col(0, 0, 0), z(0) = 1, ϑ̂(0) = 0 and the initial conditions of the
filters set to zero. A 10−3-periodic sine function is utilized as signal injection, which corresponds to
ε = 0.001.

The simulation results are given in Fig. 3, which shows the evolution of all signals of interest. The
plot of the virtual output and its estimate verify the efficiency of the estimator (25), since consistent
with the prediction of the theory, the estimation error is around O(ε). The plot of dynamic extension
z and x3 clearly illustrate that, after a certain transient due to the initial error of ŷv, they verify the
relation z(t) = x3(t) + ϑ, with the constant deviation being effectively estimated as seen from the plot
of x̂3. The history of the control input u, is shown in the last figure with and without signal injection
term sb, highlighting that the high frequency signal added to the input is effectively “filtered” by the
system dynamics rendering it, essentially, unobservable.

12



  

  

 

Figure 3: Simulation results of the levitated ball

13



8. Conclusions and Future Research

We have investigated how to relax the conditions for the design of the PEBO for nonlinear systems
reported in [22]. The first modification is the introduction of the signal injection proposed in [6]
to generate new “virtual outputs” that are incorporated in the PEBO design. To carry out this
objective it was necessary to provide some extensions to the work of [6]. Although not discussed
in this paper it is clear that the addition of these new outputs also relaxes the left invertibility and
parameter identifiability conditions of PEBO—these features are illustrated with some representative
examples including a novel sensorless controller for a magnetic levitation system. The second main
modification is to translate the problem of solving the key PDE into the solution of a set of nonlinear
algebraic equations and an integrability condition, with both steps including some free parameters.
This new procedure is similar to the so-called “algebraic solution” of interconnection and damping
assignment passivity-based controllers proposed in [9], see also [21], which has proven successful in
some applications where solving the PDE is a hard task.

Some problems that need to be further studied include the following,

• Identify physical systems satisfying the relaxed requirements of PEBO, especially for electro-
mechanical systems to obtain sensorless controllers.

• Study the sensitivity of PEBO to measurement noise, this issue is particularly critical since
PEBO sometimes involves the open-loop integration of signals.

• Investigate the conditions under which PEBO yields a “tractable” parameter estimation problem
beyond the linear dependence case studied in [22]—considering, for instance, monotonicity or
convexity/concavity dependences.

• The connection between PEBO, KKL and immersion and invariance observers is currently under
investigation and we expect to report soon a unifying framework for all of them.
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Appendix A. Proof of Lemma 1

Define χ := col(x, xc). In the fast time scale τ = t
ε , the dynamics become

dχ

dτ
= ε
(
F

(1)
1 (χ) + F

(2)
1 (χ)s(τ)

)
+ ε2F2(χ, τ) +O(ε3),

where

F
(1)
1 :=

(
f(x) + g(x)β(xc, h(x), hv(x))

F (xc, h(x), hv(x))

)
,

F
(2)
1 :=col(g(x)b, 0),

F2 :=

(
g(x)∂3β(xc, y, y̆v) ·

(
κ(x, tε) + ω(x, t)

)
∂3F (xc, y, y̆v)

(
κ(x, tε) + ω(x, t)

) )
.

(A.1)

Following [6], we use the second-order averaging approach to obtain the averaged system of (22).

Considering the periodic terms F
(2)
1 (χ)s(τ) and κ(τ), the averaged system in time scale t is5

˙̄χ =

(
f(x̄) + g(x̄)β(x̄c, h(x̄), hv(x̄))

F (x̄c, h(x̄), hv(x̄))

)
+ ε∆(χ̄, t), (A.2)

where
∆(χ̄, ετ) := col(∆1,∆2)

=

(
g(x̄) · ∂3β(x̄c, y, y̆v)ω(x̄, ετ)
∂3F (x̄c, y, y̆v)ω(x̄, ετ)

)
,

which is a perturbed system of the nominal system (18). In the interval [t, t+O(1/ε)) we have(
x
xc

)
=

(
x̄
x̄c

)
+ εS(

t

ε
)

(
g(x̄)b

0

)
+O(ε2). (A.3)

Thus, noticing that

∇>h(x)g(x)bS(
t

ε
) = hv(x(t))S(

t

ε
) +O(ε),

with x := x(t)− εg(x)bS( tε) +O(ε2), we have

y = h(x̄) + εhv(x)S +O(ε2) (A.4)

Let us proceed now with the perturbation analysis of the averaged system. According to Assump-
tion 1, for (x̄, x̄c) ∈ D ⊂ Rn × Rnxc , where D is any compact set covering the equilibrium, there exist
nonnegative constants ki (i = 2, . . . , 5) such that |∆1| ≤ k2|χ̄|+ k3 and |∆2| ≤ k4|χ̄|+ k5. Define

F(x, xc) :=

(
f(x) + g(x)β(xc, h(x), hv(x))

F (xc, h(x), hv(x))

)

5(̄·) denotes the states in the averaged system.
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According to the converse Lyapunov theorem of exponential stability [16], there exist a smooth and
positive definite function V (χ) and constants ci ∈ R+ (i = 1, . . . , 3) for (x, xc) ∈ Rn × Rnxc such that

c1|χ|2 ≤ V (χ) ≤ c2|χ|2,
∇>V (χ)F(x, xc) ≤ −c3|χ|2.

For any D there exists a constant c4 such that c4 := supχ∈D |∇V (χ)|. For the averaged (x̄, x̄c)-system

(A.2), we have

V̇ (x̄, x̄c) ≤ −c5|χ̄|2 + εc6

where c5(ε) = c3 − εmax(k2, k4)/2 and c6 = max(k2, k4)c
2
4/2 + c4 max(k3, k5).

There exists a constant ε(1) ∈ (0, 1] such that c5(ε
(1)) > 0, and define c5 = c5(ε

(1)). It yields that
for ` ∈ (0, 1),

V̇ (x̄, x̄c) ≤ −(1− `)c5|χ̄|2, ∀χ̄ /∈ Ω(1)

where

Ω(1) :=

{
χ̄ ∈ Rn+nxc

∣∣∣∣|χ̄| ≤√ε c6`c5
}
.

There exists ε(2) ∈ (0, 1] such that Ω(1) ⊂ D, thus selecting ε∗ as ε∗ = min(ε(1), ε(2)). For ε ∈ (0, ε∗],
the state of averaged system will exponentially converge into an invariant set with radius O(

√
ε).

The correlation (A.3) and Proposition 3 holds in the interval [0,O(1/ε)). Suppose an interval
[0, T ∗1 ] ⊂ [0,O(1/ε)), where T ∗1 := k∗1/ε and k∗1 ∈ R+. According to the second-order average theorem,
there is another averaged system, namely Ave-2-system6, having the same dynamical equation as (A.2)
with the initial value as

χ̄(2)(T ∗1 ) = χ̄(T ∗1 ),

and its flow is defined as χ̄(2)(t;T ∗1 , χ(T ∗1 )). It should be pointed out that the Ave-2-system is asymp-
totically stable w.r.t. an invariant set. Thus there always exists a moment T ∗2 := T ∗1 + k∗2/ε such that(

x
xc

)
=

(
x̄(2)

x̄c
(2)

)
+ εS(

t

ε
)

(
g(x̄(2))

0

)
+O(ε2). (A.5)

holds in [T ∗1 , T
∗
2 ], and

y(t) = h(x̄(2)(t)) + εhv(x̄
(2)(t))S(

t

ε
) +O(ε2)

Eq. (26) still holds in the interval [T ∗1 , T
∗
2 ].

Iterating the above procedure to construct the Ave-i-system (i = 3, . . . , n, . . .) with updated initial
states

χ̄(i)(T ∗i−1) = χ̄(i−1)(T ∗i−1),

which do not need to be known in the design, with

T ∗i =

i∑
j=1

k∗i
ε
,

it yields (
x
xc

)
=

(
x̄(i)

x̄c
(i)

)
+ εS(

t

ε
)

(
g(x̄(i))

0

)
+O(ε2). (A.6)

We obtain that the virtual output estimator in Proposition 3 still works with the accuracy as (26) in
[T ∗i , T

∗
i+1]. Notice that O(

√
ε) +O(ε) = O(

√
ε), for ε ∈ (0, 1). It completes the proof.

6The superscript (·)(i) denotes the state in the Ave-i-system.
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Appendix B. Proof of Proposition 3

Caveat: We should bear in mind that we do not know whether y̆v = ŷv verifies (20). Thus,
the result in Lemma 1 cannot be utilized in the proof. However, even if ŷv is not in the form (20),
following the similar analysis method in Appendix A, there exists an averaged system which keeps the
relationship (A.4) when probing signals. This is the key identity in the following proof, i.e., (B.1). To
avoid cluttering the notations, whenever clear from context, we still use ‘(̄·)’ to denote the states of
this new averaged system.

The proof mimics the derivations of [6]. Assumptions 1 guarantees that ˙̄y, ¨̄y and ˙̄yv exist for the
averaged system (A.2). We can, thus, obtain a Taylor series expansion of third order and second order
of ȳ and ȳv, respectively. That is,

ȳ(t− τ) = ȳ(t)− τ ˙̄y(t) +
τ2

2
¨̄y(t) + τ3∆1(t, τ)

ȳv(t− τ) = ȳv(t)− τ ˙̄yv(t) + τ2∆2(t, τ).

The accuracy of the estimate of yv is given as follows.

̂̄y(t) =
1

nε

∫ nε

0

(
ȳ(t)− τ ˙̄y(t) +

1

2
τ2 ¨̄y(t) + τ3∆1(t, τ)

)
dτ

+
1

n

∫ nε

0

(
ȳv(t)− ˙̄yv(t)τ + τ2∆2(t, τ)

)
S
( t− τ

ε

)
dτ + ε2V

( t
ε

)
=ȳ(t− nε

2
) + ε2

(
n2

24
¨̄y(t) + ˙̄yv(t)S

( t
ε

))
+ ε2V

( t
ε

)
+O(ε3),

(B.1)

(
1

nε

∫ t

t−nε
S2
(µ
ε

)
dµ

)
· ŷv(t) =

1

ε

1

nε

∫ t

t−nε

[
ȳ(µ) + εyv(µ)S

(µ
ε

)
+ ε2ν − ȳ(µ− nε

2
)

− ε2
(
n2

24
¨̄y(µ) + ˙̄yv(µ)S

(µ
ε

))
− ε2V(

µ

ε
) +O(ε3)

]
S
(µ
ε

)
dµ

=

(
1

nε

∫ t

t−nε
S2
(µ
ε

)
dµ

)
· yv(t) + εV(t) +O(ε2) · 1p,

(B.2)

where εV =
∫ t
t−nε

(
ν(µ/ε) −V(µ/ε)

)
· S(µ/ε)dµ, in which the norm of V is independent of ε. S(·) is

the primitive of S with zero mean, and V is the primitive of ν, that is

S(
t

ε
) =

1

n

∫ t
ε

t
ε
−n
µS(µ)dµ.

The last equation is obtained by

1

nε2

∫ t

t−nε
−ε2 ˙̄yv(µ)S(

µ

ε
)S(

µ

ε
)dµ

=− ε2

2
˙̄yv

(
S
2(
t

ε
)− S2( t− nε

ε
)

)
+O(ε2) · 1p

=O(ε2) · 1p.

Define p = 1/(nε)
∫ t
t−nε S

2(µ/ε)dµ > 0, which is independent of ε and t due to the periodic property
of S. Therefore, the accuracy of the estimator is

ŷv(t) = yv + εp−1 ·V(t) +O(ε2) · 1p.

For a given n, V is bounded in the form of ω(x, t). In this design, the periodic term εκ(x, tε) equals to
zero.
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Appendix C. Proof of Proposition 4

For the asymptotic case, according to the converse Lyapunov theorem (Theorem 4.16 in [16]), there
is a smooth, positive definite function V (|χ|) that satisfies the following inequalities,

α1(|χ|) ≤ V (t, χ) ≤ α2(|χ|)
α3(|χ|) ≥ ∇tV +∇χV >F(x, xc),

where αi (i = 1, . . . , 3) are class K functions. For χ ∈ D with any compact set D, there exists a class
K function such that

|∇χV (t, χ)| ≤ α4(|χ|).

For χ̄ ∈ D and a given ε, there always exists ε(3) such that ε|∆| ≤ ε(3). Define a mapping r : ε 7→ R+

satisfying ε(3) < α3(α
−1
2 (α1(r))) ·α−14 (r). In terms of Lemma 9.3 in [16] the solution χ̄ of the averaged

system satisfies that, for some class KL function B, there exist a time T such that

|χ̄(t)| ≤ B(|χ̄(0)|, t− t0), ∀t ∈ [0, T )

and
|χ̄(t)| ≤ α−11

(
α2

(
α−13

(
ε(3)α4(r(ε))

)))
:= D(ε), ∀t ≥ T,

where the function D(·) is class K.
The behaviour analysis of the actual system follows the one of exponential case, completing the

proof.
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