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Abstract

As it is is well-known, the introduction of causality conditions in Wiener filtering problems completely

changes their solution. A constraint such as causality can be presented as a particular reduction of

the observation space, and the constrained filter can always be obtained by projection onto this space.

However, it is sometimes simpler to use an indirect method which gives the impulse response of the

constrained filter by an appropriate modification of the unconstrained response. This method is presented

and applied to many examples. In particular, the structure of constrained prediction filters is analyzed,

and it is shown that the constrained innovation can be expressed in terms of the unconstrained one by

an appropriate filter.
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I. INTRODUCTION

Wiener filtering is a well-known technique for the extraction of a signal from a noisy observation

[l]-[3]. In the discrete-time and stationary case, the output of a Wiener filter is

x̂(k) =
+∞∑

l=−∞
h(l)y(k − l), (1)

where x(k) and y(k) are the signal to be estimated and the observation respectively. The impulse response

(IR) h(k) of this filter is calculated in such a way that x̂(k) is the best linear mean square estimate of

x(k), and if x(k) and y(k) are zero mean and stationary, h(k) is the solution of the Wiener-Hopf equation
+∞∑

l=−∞
h(l)ry(k − l) = rxy(k), (2)

where the r functions are the auto and cross correlation functions defined, respectively, by

ry(k) = E[y(n)y(n− k)], rxy(k) = E[x(n)y(n− k)]. (3)

By using the z transforms of (2) and (3), we obtain the transfer function H0(z) of the Wiener filter h0(k)

as

H0(z) = [Ry(z)]−1Rxy(z). (4)

In many practical situations we have to solve the same problem with a particular constraint on the

IR h(k). The best known case corresponds to the causality constraint, in which we impose in (1) that

hc(k) = 0 for k < 0. In this case the Wiener-Hopf equation (2) becomes
+∞∑
l=0

hc(l)ry(k − l) = rxy(k), k ≥ 0, (5)

which can be solved by many means. The simplest one uses spectral factorization [4], [5], and the transfer

function obtained is

Hc(z) = αB(z)[B(z−1)Rxy(z)]+, (6)

where B(z) is deduced from the strong factorization of Ry(z), which means that B(z) is a minimum-

phase filter, α is a constant, and []+ means the causal part of the term in brackets. Two facts then appear

immediately.

1) The constraint on the IR completely changes the Wiener filter.

2) The solution of the constrained problem can be obtained directly and without using the solution of

the unconstrained problem.

These conclusions are quite general for other kinds of constraints. However, in many cases it appears

more interesting, particularly from a computational point of view, to solve the constrained problem by

using the unconstrained solution, which is often known.
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Let us, for example, consider the interpolation problem in which the only constraint in (1) is h(k) = 0

for k = 0. The corresponding Wiener-Hopf equation is

∑
l 6=0

hc(l)ry(k − l) = rxy(k), k 6= 0, (7)

and the direct solution of this problem is not at all simple. By using the unconstrained solution (4) it can

be reduced to one linear equation, and this indirect solution appears extremely simple and attractive.

Many other cases of such constraints exist for which the indirect solution is simpler to obtain, and

the aim of this paper is to present and discuss some examples and applications of constrained Wiener

filtering using indirect methods.

In the signal processing or automatic control area, P-step prediction is a good example of the constrained

Wiener filtering problem. In this case the constraint on the IR h(k) is characterized byh(k) = 0 for

0 ≤ k ≤ P − 1. This problem is important in many areas of adaptive control [6] and has been partially

solved by Astrom [7, p. 165]. This solution does not use a systematic approach of constrained estimation

problems, and the result is obtained after a long calculation and only under limited assumptions. In the

following we will present a general solution to this problem and discuss some interesting properties of the

general constrained predictor. Other constrained problems are studied in [8] with a completely different

approach.

Note that constrained estimation problems have been considered in areas other than signal processing

or information theory. Similar problems appear in mathematical geology under the name kriging, and an

excellent review can be found in [9]. More recently, a paper was presented discussing the problem of

linear constraints on least square methods from a computational point of view [10].

Finally, we note that many kinds of constraints can be imposed on the IR h(k) of (1), and we will

restrict our study to linear constraints, as defined in the next section. For example, an amplitude constraint

such as |h(k)| < M , which is necessary for some applications, is nonlinear and cannot be studied by the

same procedure.

II. STATEMENT AND SOLUTION OF THE PROBLEM

A. Notations

Let us call F the space consisting of functions h(k) (representing IR’s of filters) with z transforms

H(z) =
+∞∑

k=−∞
h(k)z−k =

∑
k

h(k)z−k, (8)
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which are convergent on the unit circle (u.c.). Two filters of F are orthogonal, denoted by the symbol

⊥, if ∑
k

h(k)g(k) = 0 or, equivalently, if [F (z)G(z−1)]0 = 0, (9)

where [A(z)]0 means a(0), coefficient of z0 in the z expansion of A(z).

Let us denote by H the Hilbert space of zero-mean second-order random variables with the scalar

product E[uv]. In this space the orthogonality, specified by the symbol ⊥⊥, means uncorrelatedness. We

also denote by Hy the observation space which is the Hilbert subspace of H generated by the observation

y(k). A filter of F is subject to a linear constraint if its IR h(k) belongs to a linear subspace S of F .

This linear constraint generates a Hilbert subspace Hy(S) of the observation space Hy defined by

Hy(S) =

{
s(k) |s(k) =

∑
l

g(l)y(k − l), g(k) ∈ S
}
. (10)

Let us now introduce the concept of constrained z transforms. If h(k) ∈ S, its z transform is denoted

HS(z). From the projection theorem any IR h(k) can be decomposed into the sum

h(k) = hS(k) + h 6S(k), hS(k) ⊥ h6S(k) (11)

and this decomposition is unique. Of course, the subspace 6 S is orthogonal to S. In terms of z transforms,

this decomposition becomes

H(z) = HS(z) +H6S(z), [HS(z)H6S(z−1)]0 = 0. (12)

B. Direct Solution of the Constrained Wiener Filtering

The problem is to find h(k) ∈ S such that E[x(k)− x̂(k)]2, where x̂(k) is given by (1), is minimum.

This problem can be solved by variational methods, but it is simpler to use the orthogonality principle

[2, p. 3361. From this principle h(k) is deduced from the orthogonality equation

x(k)− x̂(k) ⊥⊥ Hy(S). (13)

By using the definition of x̂(k) from (1) and of the orthogonality in H , we immediately obtain an

equivalent condition

∑
k

g(k)

[∑
l

h(l)ry(k − l)− rxy(k)

]
= 0, ∀g(k) ∈ S. (14)

In other words, the constrained Wiener filter has an IR h(k) belonging to S and such that

∑
l

h(l)ry(k − l)− rxy(k) ⊥ S. (15)
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If S is of finite dimension, this equation can be easily solved. Otherwise, the problem is much more

complex, and no general method exists for its solution. In the z domain the problem is to find a function

HS(z) such that

[HS(z)Ry(z)−Rxy(z)]S = 0. (16)

and this is the equation we use to find the causal solution (6).

C. Indirect Solution of the Problem

To any function H(z) let us associate

H̄(z) = Rxy(z)−Ry(z)H(z). (17)

Assuming that Ry(z) 6= 0, at least in the vicinity of the u.c., we can write

H(z) = C(z)[Rxy(z)− H̄(z)], (18)

where

C(z) = [Ry(z)]−1, (19)

We deduce immediately that

H(z) = H0(z)− C(z)H̄z), (20)

where H0(z) is the transfer function of the unconstrained Wiener filter given by (4).

With these notations it appears that our problem consists of finding a function HS(z) such that H̄6S(z) =

0. This can also be expressed in the form: find a function H̄6S(z) such that

[H̄6S(z)C(z)−H0(z)]6S = 0. (21)

It is clear that this equation is very similar to (16). However, as we will verify in the following, it

appears that in many problems it is much simpler, particularly from a computational point of view, to

solve (21) than (16). To calculate H(z) it is sufficient to insert the solution of (21) into (20), which

shows clearly that the indirect method needs the a priori knowledge of the unconstrained solution H0(z).

D. Finite Case

If either S or 6S are of finite dimension, (16) or (21) can be converted to a finite set of linear equations

of the same dimension. As an example, that is the case of interpolation giving (7). Here the dimension

of S is unity, and clearly, the indirect solution must be applied.

The case where S has a finite dimension is very well-known, and the direct solution can be applied

immediately. Accordingly, let us consider the case where 6 S has a finite dimension and can be spanned by
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a set of P orthonormal functions vi(k). If we expand H̄6S in terms of the z transforms of these functions,

we have

H̄6S =
P∑
i=1

h̄[i]Vi(z). (22)

It is shown in Appendix I that the P coefficients h̄[i] are the solutions of the system

P∑
i=1

c[i, j]h̄[j] = h0[i], 1 ≤ i ≤ P, (23)

where

c[i, j] =
∑
k,l

vi(k)c(k − l)vj(l), (24)

and

h0[i] =
∑
k

h0(k)vi(k). (25)

In (24) c(k) is, of course, the inverse z transform of C(z) defined by (19). In the time domain, the IR

of the constrained Wiener filter is deduced from (20), which gives

h(k) = h0(k)−
∑
l

c(k − l)h̄(l) = h0(k)−
P∑
i=1

h̄[i]
∑
l

c(j − l)vi(l), (26)

where h0(k) is deduced from (4) and (19) by

h0(k) =
∑
l

c(k − l)rxy(l). (27)

E. Expression of the Minimum Mean Square Error

The mean square error is the variance ofx(k)− x̂(k), and from (13) it follows that

ε2 = E{[x(k)− x̂(k)]2} = σ2x − σ2x̂, (28)

where σ2 denotes variance. From (1) we deduce that

σ2x̂ = [Ry(z)H(z)H(z−1)]0 , (29)

where H(z) is given by (20). Bt using the fact that Ry(z)C(z) = 1 and that H(z) = HS(z), H̄(z) =

H̄6S(z) and then are orthogonal, we deduce easily that

ε2 = ε20 + ε2c , (30)

where ε20 is the minimum error without constraint and ε2c an additional error due to the constraint and

given by

ε2c = [C(z)H̄(z)H̄(z−1)]0. (31)
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In the time domain this additional error is, of course,

ε2c =
∑
k,l

h̄(k)c(k − l)h̄(l). (32)

and in the finite case considered in Section II-D it becomes

ε2c =
P∑

k,l=1

h̄(i)c(i, j)h̄(j). (33)

III. CONSTRAINED CAUSAL WIENER FILTERS

The problem of Wiener filtering with a causality constraint has been widely studied, and in the stationary

case it is solved by the spectral factorization technique. A constrained causal filter is a causal filter which

satisfies some additional constraints. We have seen that the filter for the P step prediction must be causal

but also satisfy the condition h(k) = 0 for 0 ≤ k < P . Of course many possible other constraints exist.

For example, in detection problems it is sometimes necessary to make an estimation with the noise alone

reference (NAR) property [ll], [12], which means that no contamination of the observation by the signal

occurs. Then the corresponding causal filter-must satisfy the causality and the NAR constraints.

A. Causality Constraint Only

In this case the subspace S is the subspace S+ of functions a(k) vanishing for k < 0. These functions

and their constrained z transforms are denoted a+(k) and A+(z) respectively. Then the causal Wieser

filtering problem consists of finding a pair of functions |H, H̄] such that H = H+, and H̄ = H−.

For this purpose let us introduce the innovation filter of y(k) and its transfer function B(z). It is the

filter calculating ỹ(k) = y(k) − ŷ(k), where ŷ(k) is the one step prediction with infinite past of y(k).

The variance of this innovation is the prediction error η2, and, as the innovation is a white noise, we

have

η2 = Ry(z)B(z)B(s−1). (34)

Furthermore, note that the innovation filter is a minimum-phase filter, and its IR b(k) satisfies b(0) = 1.

By using (18), (19), and (34), we can write

H(z) = (η2)−1B(z)T (z), (35)

where T (z) is defined by

T (z) = B(z−1)[Rxy(z)− H̄(z)]. (36)
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To determine H(z), it is equivalent to work with H̄ or with T , provided that H−(z) = 0. From (35) this

condition means that [BT ]− = 0. If we decompose T in its causal and anticausal parts, T = T− + T+,

and if we notice that [BT+]− = 0 because B is causal, we get

[B(z)T (z)]− = [B(z)T−(z)]− = 0. (37)

This means that BT− is a causal filter. However, as B(z) is a strictly minimum-phase filter, its inverse is

also causal, and it follows that T− is causal, which is impossible. Then the condition H−(z) = 0 gives

T (z) = T+(z). Using (36) and noting that B(z−1) and H̄(z) are anticausal (H̄ = H− is the condition

imposed), we get

T (z) = [B(z−1)Rxy(z)]+ , (38)

which defines H(z) by (35). That is the classical result which can be obtained by many other approaches

and is indicated in (6).

B. Constrained Causal Filter

Denoting S+ and S− as the subspaces of causal and anticausal functions, respectively, i.e., functions

a(k) vanishing for k < 0 or for k ≥ 0, we impose on the impulse response h(k) of the Wiener filter the

constraint h(k) ∈ S ⊂ S+. We can then define a subspace e+ of S+ such that

6S = S−
⊕

e+ ; e+ ⊥ S− . (39)

As a consequence we have for any function A(z)

A 6S(z) = A−(z) +Ae+(z), (40)

and the condition A6S = 0 requires simultaneously

A−(z) = 0 ; Ae+(z) = 0. (41)

We apply these properties to H(z) which must satisfy H6S(z) = 0.

I) Consequences of H−(z) = 0 : They are the same as in Section III-A, but now H̄ = H6S = H̄−+H̄e+,

which gives

T (z) = T+(z) = [B(z−1)Rxy(z)]+ − [B(z−1)H̄e+(z)]+ , (42)

2) Consequences of H̄e+(z) = 0 : From (35) it is sufficient to write

[B(z)T (z)]e+ = 0, (43)

which gives with (42)

{B(z){[B(z−1)H̄e+(z)] + [B(z−1)Rxy(z)]+}}e+ = 0. (44)

This equation defines H̄e+(z) and then H(z) by using (34) and (42).
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C. Calculation of the Constrained Causal Filter

As indicated earlier, this calculation requires the solution of (44) which can be written

{B(z)[B(z−1)H̄e+(z)]}e+ = {B(z)[B(z−1)Rxy(z)]+}e+ . (45)

D. Constrained Prediction Filters

Prediction problems are generally much simpler than estimation ones because Rxy = Ry, which

greatly simplifies the resolution of (45). Moreover, it is important to notice that because x = y the

subspace e+ contains necessarily the function δ[k], which means that the impulse response h(k) of

any predictor must satisfy h(0) = 0, otherwise, the prediction problem would become singular. Using

Rxy(z) = Ry(z) = η2[B(z)B(z−1)], (45) becomes

{B(z)[B(z−1)H̄e+(z)]+}e+ = η2, (46)

H(z) = 1−G((z), (47)

G(z) = (η2)−1B(z)[B(z−1)H̄e+ ]+ . (48)

We can make three comments about these expressions. First, the filter does not depend on η2, because

this variance disappears between (46) and (48). This fact is quite natural because the structure of any

predictor does not depend on any scaling factor in the observation. Then to solve (46), we can assume

that η2 = 1. Second, if we call ŷc(n) and ỹc(n) the outputs of the filters H and G, respectively, we

deduce

ỹc(n) = y(n)− ŷc(n), (49)

which is the definition of the constrained innovation. However, due to the constraint, this innovation has

no reason to be a white noise. To find the true innovation of the signal y(n), we must use the one-step

predictor. In this case the subspace e+ is the subspace of constant functions, which means that H̄e+ = c.

By using (46) and (48); we easily find G(z) = B(z), which is effectively the filter giving the innovation

of y(n). Third, we check that h(0) = 0, as indicated for any predictor.
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