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Abstract

Volterra filters are a particular class of nonlinear filters defined by an extension of the concept of

impulse response to the nonlinear case. Linear-quadratic filters are a special example of Volterra filters

limited to the second order. In the first part of this paper it is shown that all the results recently published,

valid in the linear-quadratic case, can be extended with the appropriate notations to Volterra filters of

arbitrary order. In particular, the optimum Volterra filter giving the maximum of the deflection for the

detection of a signal in noise is wholly calculated. In the second part several geometrical properties

of optimal Volterra filters are investigated by introducing appropriate scalar products. In particular the

concept of space orthogonal to the signal and the noise alone reference (NAR) property are introduced

allowing a decomposition of the optimal filter that exhibits a relation between detection and estimation.

Extensions to the infinite case and relations with the likelihood ratio are also investigated.
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I. INTRODUCTION

THE CONCEPT of an optimal linear-quadratic system for detection and estimation was introduced

in a previous paper [l]. It was also noted that linear-quadratic systems can be described by a Volterra

expansion limited to the second order term. Volterra filters (VF) have been introduced into many aspects

of nonlinear filtering problems, and we shall not mention here all the papers discussing their properties.

For an introduction to this field applied to problems similar to those discussed hereafter, the reader should

consult [21-[51.

It is thus natural to extend the results presented in [l] to VF of arbitrary order, and this is the first

purpose of this paper. At first glance this extension is quite obvious [6], and to avoid excessive length, we

will present the main ideas and fundamental results. Our principal effort will be to introduce simplified

notations in such a way that the analogy between the second order case and the general case appears

evident. In fact, the input-output relationship of a VF is extremely tedious to write out, and without our

simplified notation the paper would be full of complex equations contributing little to the understanding

of the physical meaning of the results. It should be clear, however, that the exact analytical solution of

our condensed equations would require extensive calculations.

The extension of a second order to an arbitrary order VF exhibits new problems which were not

analyzed in the linear-quadratic case. Among these problems we are mainly interested in the relation

between optimal VF and the likelihood ratio (LR) filter that is the absolute optimal system for the test,

or the detection, between two simple hypotheses, say the null hypothesis H0 corresponding to the noise

only situation, and the hypothesis H1 corresponding to the presence of a signal. For this purpose filters

are considered as vectors in appropriate Hilbert spaces. In particular it is shown that the filters belonging

to the space orthogonal to the LR have the NAR property. This is the basis of a decomposition of the

optimal VF in two terms that exhibits relations between detection and estimation. Some extensions to

the infinite case are also discussed.

II. OPTIMAL VOLTERRA FILTERS

A. Principles of Volterra Filtering

A Volterra filter of order v (v positive integer) is a nonlinear system the input-output relationship

of which is described by a finite Volterra expansion. To simplify the presentation we will consider the

discrete time case only, and we call x[k] and y[k] the input and output, respectively. The output is

expressed by

y[k] = h0 +

v∑
m=1

∑
{imn }

hm[im1 , i
m
2 , . . . , i

m
m]x[k − im1 ]x[k − im2 ] . . . x[k − imm]. (1)
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In this expression k and imn are arbitrary integers and the symbol {imn } means that the sum is taken on all

the imn s. The term h0 corresponding to m = 0 is a constant and is sometimes omitted. In this latter case,

and if v = 1, we obtain the classical convolution characterizing linear filters. By an obvious extension of

the terminology used in the linear case, we will say that the Volterra filter has a finite impulse response

if the integers imn are taken in a finite interval, as, for example, 1 ≤ imn ≤ N. We make this assumption

henceforth to avoid convergence problems. In this case the input at time k can be considered as a vector

x with components x[i], 1 ≤ i ≤, and the output can be written as

y[k] = h0 +

v∑
m=1

∑
{imn }

hm[im1 , i
m
2 , . . . , i

m
m]x[im1 ]x[im2 ] . . . x[imm] (2)

where the imn s satisfy 1 ≤ imn ≤ N .

For the discussion that follows it is necessary to simplify the notations a little more, and to this end

we first write

hm[im1 , i
m
2 , . . . , i

m
m] = hm[im]. (3)

Furthermore we associate with the v kernels hm the quantity

|h, v>= {h1[i1], h2[i2], . . . , hv[iv]}. (4)

The quantity λ|h, v > is obtained by replacing the hs by λh and the sum |h, v > +|h′, v > is obtained

by replacing the hs by h + h′. With these rules the quantity|h, v > becomes a vector of a linear space

called RN [v]. For v = 1 and without a constant term we find the classical vector space RN .

As in any linear vector space, we can introduce linear operators such as

A|h, v>= |h, v′> (5)

and all the concepts associated with these operators are valid in RN [v].

More important is the concept of a scalar product of vectors of RN [v]. This scalar product of two

vectors |h, v> and |h, v′> is defined by

< h, v|h′, v>=

v∑
m=1

∑
im

h[im]h′[im] (6)

which is a direct extension of that used in RN [v]. This allows the introduction of the transpose of an

operator A defined by

< g, v|A|h, v>=< h, v|AT |g, v> . (7)

Finally, an operator A is said to be symmetric if A = AT and positive definite if for any |h, v> we

have

< h, v|A|h, v>≥ 0. (8)

July 4, 2018 DRAFT



4 IEEE TRANSACTIONS ON INFORMATION THEORY

Let us now define the input vector |X, v>. The input signal in (2) is a real N-dimensional vector x

with components x[i] . To this vector of RN we associate the vector of RN [v] defined by

|X, v>4= {x[i11], x[i21]x[i22], . . . , x[iv1]x[iv2] . . . x[ivv]} (9)

It is the v order input vector associated with the input x. With this notation (2) can be written as

y = h0+ < h, v|X, v>, (10)

which greatly simplifies the notations. Of course the exact calculation of y requires the return to (2). It

is clear that if v = 1 or v = 2 we again find the linear and linear-quadratic filters. Finally, to simplify a

little more, we will omit the letter v when no ambiguity is possible in the order of the filter. Thus in the

following |h> means |h, v>, whenever the order v of the filter is well specified.

In detection and estimation problems the input x is usually random. When this is the case, the vector

|X> also becomes random, as does the output y given by (10). The randomness of the input introduces

two points that must be briefly discussed. First, and most important, the output y can be undefined, in

the sense that it is not a second order random variable. To avoid this situation we must assume that the

input vector x has finite moments up to order 2v. This ensures that y has a finite second order moment,

or is a second order random variable. Secondly, y does not in general have a zero-mean value. To define

this value let us introduce

|m>
4
= E(|X>) (11)

which is a vector of RN [v] obtained by taking the expectation value of the terms of (9). Then

E(y) = h0+ < h|m>, (12)

and if h0 = − < h|m>, y becomes, of course, zero-mean. For any arbitrary |h> it is then possible to

use the constant term h0 in the Volterra expansion (2) in such a way that y becomes zero-mean. This

procedure is equivalent to using the vector |X0> defined by

|X0>= |X> −|m>, (13)

which is, of course, zero-mean and to writing (10) with h0 = 0. This is done in what follows. This was

already the case in [l] where linear-quadratic systems were written as y = hTx + xTMx − Tr(CM),

where x has zero-mean value and covariance matrix C.
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B. Optimal Volterra Filter for Detection

As in [l], our purpose is to find the optimal filter giving the maximum of the deflection of the output

y defined by

D(y) = N/D, (14)

N = [E1(y)− E0(y)]2, (15)

D = V0(y), (16)

where E0 and E1 mean-expectation value under hypotheses H0 and H1 respectively and V0 denotes the

variance under H0.

To calculate the numerator we introduce the notation

E1−0(y)
4
= E1(y)− E0(y), (17)

and we define the signal vector by

|s>4= E1−0(|X>) = E1−0(|X0>). (18)

With this notation we get

N =< h|s>2 . (19)

As y is zero-mean under H0, its variance is E0(y
2), or

V0(y) = E0[< h|X0>< X0|h>], (20)

where |X0> is defined by (13). Note that as the expectation values in (11), (13), and (20) are taken under

H0 y is zero-mean under H0 but not under H1, which appears in (15) and (17). Finally the variance can

be written as

V0(y) =< h|K|h>, (21)

with

K
4
= E0[|X0>< X0|]. (22)

This is a positive definite symmetric operator. With these notations and by using the Schwarz inequality

we find that the maximum value of the deflection obtained with a Volterra filter of order v is

d2v =< s, v|K−1|s, v>, (23)

and the corresponding optimal filter is

To,v(x) = α < s, v|K−1|X0, v> . (24)
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We will assume henceforth that α = 1. This result gives the classical matched filter [71 for Lv = 1, and

the optimal linear-quadratic filter for v = 2. The exact calculation of this filter requires the solution of

the equation

K|s̄>= |s>, (25)

which can, of course, be a tedious job for high values of v. As a result, To,v(x) takes the form

To,v(x) =< s̄|X0> . (26)

III. GEOMETRICAL CONCEPTS FOR FINITE-ORDER VOLTERRA FILTERS

A. The Space RN [v,M ]

Consider an arbitrary symmetric positive definite operator M and two vectors |a> and |b> of RN [v].

The quantity < a|M |b> satisfies all the requirements necessary to define a scalar product, written as

< a|b>M=< a|M |b> . (27)

The space RN [v,M ] is the space deduced from RN [v] in which the scalar product of vectors is defined

by (27). We obviously have RN [v, I] = RN [v], where I is the identity operator. In this space, orthogonal

vectors are called orthogonal (⊥,M) and denoted by

< a|b>M= 0⇔< a|M |b>= 0⇔ |a>⊥ (M)|b> . (28)

As the projection is a concept deduced from orthogonality, we will use the term projection (⊥,M).

In other words the projection (⊥,M) onto a subspace S is written proj(⊥,M)[|a> |M] and defined by

the orthogonality principle, or

{|a> −proj(⊥,M)[|a> |S]} ⊥ (M)|b> (29)

for any vector |b> of S.

B. The Space Hv

The output y(x) of a VF considered in Section I1 is a zero-mean second-order random variable

written as y(x) =< h, v|X0, v >. This output can then be considered as a vector of the space L2 of

scalar second order random variables. In this space the scalar product between two vectors u and v noted

(u, v) = E0[uv], and the orthogonality as well as the projection is written with the symbol ⊥⊥, to avoid

any confusion with the concepts introduced before. Note that the expectation value is taken under the

hypothesis H0 as defined after (16). The space Hv. is the subspace of L2 containing all the outputs of

VF with zero-mean value, or

Hv = {F (x)|F (x) =< h, v|X0, v>}, F (x) ∈ L2}. (30)
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C. The Signal Subspace and Its Complement

Consider the vector |s > of the space RN [v,M ] defined by (18) and the subspace RN
⊥ [v,M ; s] of

vectors of RN [v,M ] that are orthogonal (⊥,M) to |s >. By using the projection theorem, any vector

|a> of RN [v,M ] can be written as

|a>= as|s> +|a, s⊥>, (31)

where

|a, s⊥>= proj(⊥,M)|a> | RN
⊥ [v,M ; s]. (32)

Furthermore, the component as given by

as =< s|M |s>−1< s|M |a> . (33)

It is obvious that

|s>⊥ (M)|a, s⊥> . (34)

D. The Signal Decomposition of the Optimal Filter

The optimal filter (26) can also be written as

To(x) =< σ|M |X0>=< σ|X0>M , (35)

where

|σ>= M−1K−1|s>= M−1|s̄> . (36)

Applying the decomposition (31) to the vectors |σ > and |X0 > of (35) and taking into account the

various orthogonality (⊥,M) properties, we get

To(x) = Ts(x) + Ts,⊥(x), (37)

with

To(x) =
< s|M |σ>
< s|M |s>

< s|M |X0>=
< s|K−1|s>
< s|M |s>

< s|M |X0>= d2v
< s|M |X0>

< s|M |s>
. (38)

The term Ts,⊥(x) is deduced from (37) with the values (35) and (38) for To(x) and Ts(x), respectively.

Let us investigate a little more precisely, in a particular case, the meaning of the term Ts(x). Suppose

that M = I , which is the more common situation. We deduce from (38)

Ts(x) = d2vs
−2 < s|X0>, (39)
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where d2v is given by (23) and s2 =< s|s >. Suppose now, for simplification, that v = 2, which

corresponds to linear-quadratic systems studied in [ l l . In this case, we obtain easily

Ts(x) = d2vs
−2[sTx + xTKx− tr(CK)], (40)

where s = E1−0[x] and C = E0[xx
T ]. The first term in the bracket (40) is the output of the matched filter

in a white noise, sometimes also called correlation receiver, because it performs a correlation between

the input observation and the given vector s. The second term plays a similar role, but for a quadratic

receiver. In conclusion, the term Ts(x) uses directly the primary data on the hypotheses (s,K,C) without

any particular processing. This processing is performed through the term Ts,⊥(x).

IV. GEOMETRY IN L2 FOR THE OPTIMAL VOLTERRA FILTER

A. Basic Relations and the Deflection Property

Let us assume that the observation vector x(ω) of RN is a random variable with probability densities

p0(x) and p1(x) under H0 and H1, respectively. The LR appearing in the statistical decision theory is

defined by

L(x)
4
= p1(x)/p0(x). (41)

We assume in what follows that L((x)) nL2 which means that

(L,L) = E0(L
2)
4
= l2 <∞. (42)

There are some probability densities for which this is not satisfied. Such situations require a different

approach from the following and are thus outside the scope of our discussion.

In detection problems it is interesting to introduce the displaced LR, R(x), defined by [8]

R(x)
4
= L(x)− 1. (43)

It is clear that E0(R) = 0 and

(R,R) = l2 − 1
4
= d2. (44)

Property 4.1 : Any function F (x) of L2 satisfies the “deflection property” characterized by

(R,F ) = E1−0[F (x)]. (45)

Proof : It is a direct consequence of the definition of the scalar product by E0R(xR(x) where R(x is

replaced by (43).

Comments : The term “deflection” is due to the fact that (45) gives the numerator of the deflection

criterion, as seen in (15).
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As all the components of |X, v> defined by (9) are vectors of L2, we deduce immediately from (18)

that |s> may be written as

|s>= (R, |X>) = (R, |X0>). (46)

We can apply that to (35) and (38), which gives

E1−0[To(x)] = E1−0[Ts(x)] = d2v, (47)

where d2v is defined by (23).

B. The NAR Subspace

Let us introduce the subspace of L2 defined by

H⊥⊥ = {F (x)|(F,R) = 0}, (48)

which is then the subspace of functions of the observation x orthogonal (⊥⊥) to R. It is clear from (45)

that any vector of this subspace satisfies

E1(F ) = E0(F ), (49)

which is called the NAR (noise alone reference) property [71, [9]. This means that the mean value of

F is the same under H0 and H1, and as H0 is the noise only hypothesis, while H1 corresponds to the

signal-plus-noise, the mean value of F has a property of the noise alone. Furthermore, it is clear from

(15) that any function of this space gives a null deflection.

It is important to note that the NAR property is only valid in the mean, as seen on (49). It is sometimes

possible to introduce an almost surely NAR property, which is especially the case for v = 1 and for the

detection of a deterministic signal in noise. In fact the observation vector is n(ω) under H0 and n(ω)+s

under H1. If we use (31) in RN = R(1, I), we obtain

n(ω) = ns(ω) + ns,⊥(ω), (50)

where ns(ω) is the projection of the noise vector ns(ω) onto the subspace orthogonal to s. From this it

is clear that ns,⊥(ω) is independent of the presence or absence of a signal.

Property 4.2 : The function Ts,⊥(x) introduced in (37) belongs to the NAR subspace.

Proof : From (37), we get Ts,⊥(x) = To(x)−Ts(x). As a result of (47), we deduce that E1−0[Ts,⊥(x)] =

0 and this gives with (45) (R, Ts,⊥(x)) = 0, which characterizes a vector of the NAR subspace.
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C. Optimal VF and the Likelihood Ratio

Property 4.3 : The projection ⊥⊥ of the function R(x) given by (43) onto the subspace Hv defined by

(35) is the optimal filter (401, or

proj(⊥⊥)[R(x)|Hv] = To,v(x). (51)

Proof : We have to show that for any element Gv(x) of HvI defined by

Gv(x) =< g, v|X0, v> (52)

we have

(Gv, R− To,v) = 0. (53)

This last equation can be written

E0{< g, v|X0, v> [R(x)− < X0, v|K−1|s, v>]} = 0. (54)

By using (46), this equation becomes

< g, v|[|s, v> −KK−1|s, v>] = 0, (55)

which gives the result.

Comments : This property establishes the relation between the likelihood ratio L(x), or its displaced

version R(x), and the optimal Volterra filtering. It is a consequence of the fact that the filter with zero-

mean value that maximizes the deflection without any constraint is R(x), [8]. As the deflection can be

interpreted as a distance [8], it is natural that the optimal Volterra filter is the projection of R(x), onto

the Volterra subspace.

Furthermore note that in the linear case ( v = 1) it is possible to use either R(x), or L(x), if E0(x) = 0.

In fact the orthogonality relation (54) easily yields

Γh = c, (56)

where Γ = E0(xx
T ). This is the equation defining the classical linear matched filter. Of course, as

E0(x == 0, we have E0[xL(x)] = E0[xR(x)], and the matched filter is the projection of the LR, or

its displaced version, onto the subspace of linear filters. Various other estimation problems can also be

solved by this geometrical description of Volterra filtering and will be analyzed in other publications.
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