T. ,

T. ,

T. ,

T. , , pp.97-141

T. ,

T. ,

T. ,

, References

R. A. Baeza-yates and B. Ribeiro-neto, Modern Information Retrieval, 1999.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, Neural Probabilistic Language Models, J. Mach. Learn. Res, vol.3, pp.1137-1155, 2003.
DOI : 10.1007/3-540-33486-6_6

URL : https://hal.archives-ouvertes.fr/hal-01434258

R. Blanco and C. Lioma, Graph-based term weighting for information retrieval, Information Retrieval, vol.393, issue.3, pp.54-92, 2012.
DOI : 10.1038/30918

J. Blitzer, M. Dredze, and F. Pereira, Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification, Association for Computational Linguistics, 2007.

P. Blunsom, E. Grefenstette, and N. Kalchbrenner, A convolutional neural network for modelling sentences, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Proceedings of the 52nd Annual Meeting of the Association for Computational Lin- guistics, 2014.

F. Boudin, A comparison of centrality measures for graph-based keyphrase extraction, IJC- NLP, pp.834-838, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850187

F. Debole and F. Sebastiani, Supervised term weighting for automated text categorization, Text mining and its applications, pp.81-97, 2004.
DOI : 10.1145/952686.952688

URL : http://faure.iei.pi.cnr.it/~fabrizio/Publications/SAC03b.pdf

M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, Frequent substructure-based approaches for classifying chemical compounds, IEEE Transactions on Knowledge and Data Engineering, vol.17, issue.8, pp.1036-1050, 2005.
DOI : 10.1109/TKDE.2005.127

URL : http://www-users.cs.umn.edu/~karypis/publications/Papers/PDF/chemclassify.pdf

G. Erkan and D. R. Radev, LexRank: Graph-based Lexical Centrality as Salience in Text Summarization, Journal of Artificial Intelligence Research, vol.22, issue.1, pp.457-479, 2004.
DOI : 10.1613/jair.1523

URL : https://jair.org/index.php/jair/article/download/10396/24901

S. Hassan, R. Mihalcea, and C. Banea, Random-walk term weighting for improved text classification, ICSC, pp.242-249, 2007.
DOI : 10.1109/icosc.2007.4338355

URL : https://digital.library.unt.edu/ark:/67531/metadc30994/m2/1/high_res_d/Mihalcea-2007-Random-Walk_Term_Weighting_for_Improved.pdf

D. Huynh, D. Tran, W. Ma, and D. Sharma, A new term ranking method based on relation extraction and graph model for text classification, Proceedings of the Thirty-Fourth Australasian Computer Science Conference, pp.145-152, 2011.

C. Jiang, F. Coenen, R. Sanderson, and M. Zito, Text classification using graph mining-based feature extraction. Knowl.-Based Syst, pp.302-308, 2010.
DOI : 10.1016/j.knosys.2009.11.010

URL : http://www.csc.liv.ac.uk/~frans/PostScriptFiles/ai09jiang.pdf

T. Joachims, Text categorization with suport vector machines: Learning with many relevant features, ECML, pp.137-142, 1998.
DOI : 10.1007/bfb0026683

URL : https://link.springer.com/content/pdf/10.1007%2FBFb0026683.pdf

R. Johnson and T. Zhang, Effective Use of Word Order for Text Categorization with Convolutional Neural Networks, Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.103-112, 2015.
DOI : 10.3115/v1/N15-1011

URL : https://doi.org/10.3115/v1/n15-1011

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of Tricks for Efficient Text Classification, Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pp.427-431, 2017.
DOI : 10.18653/v1/E17-2068

URL : https://doi.org/10.18653/v1/e17-2068

S. Kim, K. Han, H. Rim, and S. Myaeng, Some effective techniques for naive bayes text classification, IEEE Trans. Knowl. Data Eng, vol.18, issue.11, pp.1457-1466, 2006.

Y. Kim, Convolutional Neural Networks for Sentence Classification, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
DOI : 10.3115/v1/D14-1181

URL : https://doi.org/10.3115/v1/d14-1181

M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, From word embeddings to document distances, International Conference on Machine Learning, pp.957-966, 2015.

S. Lahiri, S. R. Choudhury, and C. Caragea, Keyword and keyphrase extraction using centrality measures on collocation networks, 2014.

M. Lan, C. Tan, . Hwee-boon, S. Low, and . Sung, A comprehensive comparative study on term weighting schemes for text categorization with support vector machines, Special interest tracks and posters of the 14th international conference on World Wide Web , WWW '05, pp.1032-1033, 2005.
DOI : 10.1145/1062745.1062854

URL : http://www.comp.nus.edu.sg/~tancl/Papers/WWW05/POS806-Lan.pdf

Y. Lecun and Y. Bengio, Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, p.3361, 1995.

T. Lei, R. Barzilay, and T. Jaakkola, Molding CNNs for text: non-linear, non-consecutive convolutions, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015.
DOI : 10.18653/v1/D15-1180

URL : https://doi.org/10.18653/v1/d15-1180

E. Leopold and J. Kindermann, Text categorization with support vector machines. How to represent texts in input space?, Mach. Learn, vol.46, pp.1-3, 2002.

M. Litvak and M. Last, Graph-based keyword extraction for single-document summarization, Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization, MMIES '08, pp.17-24, 2008.
DOI : 10.3115/1613172.1613178

URL : http://dl.acm.org/ft_gateway.cfm?id=1613178&type=pdf

D. Fragkiskos, K. Malliaros, and . Skianis, Graph-based term weighting for text categorization, Proceedings of ASONAM, pp.1473-1479, 2015.

J. Martineau and T. Finin, Delta tfidf: An improved feature space for sentiment analysis, ICWSM, 2009.

A. Mccallum and K. Nigam, A comparison of event models for naive bayes text classification, AAAI: Proceedings of the Workshop on Learning for Text Categorization, pp.41-48, 1998.

R. Mihalcea and P. Tarau, Textrank: Bringing order into text, EMNLP, pp.404-411, 2004.

T. Mikolov, I. Sutskever, K. Chen, S. Greg, J. Corrado et al., Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp.3111-3119, 2013.

M. Newman, Networks: An Introduction, 2010.
DOI : 10.1093/acprof:oso/9780199206650.001.0001

K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell, Text classification from labeled and unlabeled documents using EM, Machine Learning, vol.39, issue.2/3, pp.103-134, 2000.
DOI : 10.1023/A:1007692713085

G. Nikolentzos, P. Meladianos, and F. Rousseau, Yannis Stavrakas, and Michalis Vazirgiannis . 2017. Shortest-path graph kernels for document similarity, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.1890-1900

G. Paltoglou and M. Thelwall, A study of information retrieval weighting schemes for sentiment analysis, ACL, pp.1386-1395, 2010.

B. Pang and L. Lee, A sentimental education, Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics , ACL '04, 2004.
DOI : 10.3115/1218955.1218990

S. Robertson, Understanding inverse document frequency: on theoretical arguments for IDF, Journal of Documentation, vol.60, issue.5, 2004.
DOI : 10.1016/S0306-4573(00)00015-7

E. Stephen, S. Robertson, S. Walker, M. M. Jones, M. Hancock-beaulieu et al., Okapi at trec-3, Nist Special Publication Sp, vol.109, p.109, 1995.

F. Rousseau and M. Vazirgiannis, Graph-of-word and TW-IDF, Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, CIKM '13, pp.59-68, 2013.
DOI : 10.1145/2505515.2505671

F. Rousseau and M. Vazirgiannis, Main core retention on graph-of-words for singledocument keyword extraction, ECIR, pp.382-393, 2015.
DOI : 10.1007/978-3-319-16354-3_42

F. Rousseau, E. Kiagias, and M. Vazirgiannis, Text Categorization as a Graph Classification Problem, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015.
DOI : 10.3115/v1/P15-1164

URL : https://doi.org/10.3115/v1/p15-1164

G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing & Management, vol.24, issue.5, pp.513-523, 1988.
DOI : 10.1016/0306-4573(88)90021-0

URL : http://ecommons.cornell.edu/bitstream/1813/6721/1/87-881.pdf

F. Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol.34, issue.1, pp.1-47, 2002.
DOI : 10.1145/505282.505283

URL : http://arxiv.org/pdf/cs/0110053

N. Shanavas, H. Wang, Z. Lin, and G. Hawe, Centrality-Based Approach for Supervised Term Weighting, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp.1261-1268, 2016.
DOI : 10.1109/ICDMW.2016.0181

M. Shirakawa, T. Hara, and S. Nishio, N-gram IDF, Proceedings of the 24th International Conference on World Wide Web, WWW '15, 2015.
DOI : 10.1016/j.eswa.2009.02.026

A. Singhal, C. Buckley, and M. Mitra, Pivoted document length normalization, SIGIR, pp.21-29, 1996.

R. Wang, W. Liu, and C. Mcdonald, Corpus-independent generic keyphrase extraction using word embedding vectors, 2015.

X. Zhang, J. Zhao, and Y. Lecun, Character-level convolutional networks for text classification, Advances in Neural Information Processing Systems, pp.649-657, 2015.