A resource-frugal probabilistic dictionary and applications in bioinformatics

Abstract : Indexing massive data sets is extremely expensive for large scale problems. In many fields, huge amounts of data are currently generated, however extracting meaningful information from voluminous data sets, such as computing similarity between elements, is far from being trivial. It remains nonetheless a fundamental need. This work proposes a probabilistic data structure based on a minimal perfect hash function for indexing large sets of keys. Our structure out-compete the hash table for construction, query times and for memory usage, in the case of the indexation of a static set. To illustrate the impact of algorithms performances, we provide two applications based on similarity computation between collections of sequences, and for which this calculation is an expensive but required operation. In particular, we show a practical case in which other bioinformatics tools fail to scale up the tested data set or provide lower recall quality results.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2018, pp.1-11. 〈10.1016/j.dam.2018.03.035〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

Contributeur : Camille Marchet <>
Soumis le : vendredi 14 septembre 2018 - 10:33:58
Dernière modification le : lundi 18 février 2019 - 14:50:04
Document(s) archivé(s) le : samedi 15 décembre 2018 - 13:41:43


Fichiers produits par l'(les) auteur(s)



Camille Marchet, Lolita Lecompte, Antoine Limasset, Lucie Bittner, Pierre Peterlongo. A resource-frugal probabilistic dictionary and applications in bioinformatics. Discrete Applied Mathematics, Elsevier, 2018, pp.1-11. 〈10.1016/j.dam.2018.03.035〉. 〈hal-01873312〉



Consultations de la notice


Téléchargements de fichiers