Empirical study of robust estimation methods for PAR models with application to the air quality area - Archive ouverte HAL Access content directly
Journal Articles Communications in Statistics - Theory and Methods Year : 2020

Empirical study of robust estimation methods for PAR models with application to the air quality area

Abstract

This paper compares three estimators for periodic autoregressive (PAR) models. The first is the classical periodic Yule-Walker estimator (YWE). The second is a robust version of YWE (RYWE) which uses the robust autocovariance function in the periodic Yule-Walker equations, and the third is the robust least squares estimator (RLSE) based on iterative least squares with robust versions of the original time series. The daily mean particulate matter concentration (PM10) data is used to illustrate the methodologies in a real application, that is, in the Air Quality area.
Fichier principal
Vignette du fichier
Empirical study of robust estimation methods for PAR models with application to the air quality area_author_version.pdf (525.63 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01886198 , version 1 (20-08-2021)

Identifiers

Cite

Carlo Correa Solci, Valdério A. Reisen, Alessandro Jose Queiroz Sarnaglia, Pascal Bondon. Empirical study of robust estimation methods for PAR models with application to the air quality area. Communications in Statistics - Theory and Methods, 2020, 49 (1), pp.152-168. ⟨10.1080/03610926.2018.1533970⟩. ⟨hal-01886198⟩
172 View
48 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More