H. C. So, Time-delay estimation for sinusoidal signals, IEE Proceedings-Radar, Sonar and Navigation, vol.148, issue.6, pp.318-324, 2001.

, A comparative study of two discrete-time phase delay estimators, IEEE Transactions on Instrumentation and Measurement, vol.54, issue.6, pp.2501-2504, 2005.

G. C. Carter, Coherence and time delay estimation, Proceedings of the IEEE, vol.75, issue.2, pp.236-255, 1987.

S. Zhong, W. Xia, Z. He, J. Hu, and J. Li, Time delay estimation in the presence of clock frequency error, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2977-2981, 2014.

M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes, Theory and Application, vol.NJ, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

J. Chen and A. K. Gupta, Parametric Statistical Change Point Analysis. Birkhäuser Basel, 2000.

D. V. Hinkley, Inference about the change-point in a sequence of random variables, Biometrika, vol.57, issue.1, pp.1-18, 1970.

S. B. Fotopoulos, S. K. Jandhyala, and E. Khapalova, Exact asymptotic distribution of change-point MLE for change in the mean of Gaussian sequences, The Annals of Applied Statistics, vol.4, issue.2, pp.1081-1104, 2010.

S. B. Fotopoulos and S. K. Jandhyala, Maximum likelihood estimation of a change-point for exponentially distributed random variables, ELSEVIER Statistics and Probability Letters, vol.51, pp.423-429, 2001.

H. Cramér, Mathematical Methods of Statistics, ser. Princeton Mathematics, vol.9, 1946.

C. R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bulletin of the Calcutta Mathematical Society, vol.37, pp.81-91, 1945.

T. Routtenberg and J. Tabrikian, Non-Bayesian periodic Cramér-Rao bound, IEEE Transactions on Signal Processing, vol.61, issue.4, pp.1019-1032, 2013.

Q. Lu, Y. Bar-shalom, P. Willett, F. Palmieri, and F. Daum, The multidimensional Cramér-Rao-Leibniz lower bound for likelihood functions with parameter-dependent support, IEEE Transactions on Aerospace and Electronic Systems, vol.53, issue.5, pp.2331-2343, 2017.

A. Ferrari and J. Tourneret, Barankin lower bound for change points in independent sequences, Proc. of IEEE Workshop on Statistical Signal Processing (SSP), pp.557-560, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00376422

P. S. Rosa, A. Renaux, A. Nehorai, and C. H. Muravchik, Barankintype lower bound on multiple change-point estimation, IEEE Trans. Signal Process, vol.58, issue.11, pp.5534-5549, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00532893

L. Bacharach, A. Renaux, M. N. El-korso, and E. Chaumette, WeissWeinstein bound for change-point estimation, Proc. of IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.477-480, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234929

, Weiss-Weinstein bound on multiple change-points estimation, IEEE Trans. Signal Process, vol.65, issue.10, pp.2686-2700, 2017.

L. Bacharach, M. N. El-korso, A. Renaux, and J. Tourneret, A Bayesian Lower Bound for Parameter Estimation of Poisson Data Including Multiple Changes, Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.4486-4490, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525499

E. W. Barankin, Locally best unbiased estimates, The Annals of Mathematical Statistics, vol.20, issue.4, pp.477-501, 1949.

R. J. Mcaulay and L. P. Seidman, A useful form of the Barankin lower bound and its application to PPM threshold analysis, IEEE Trans. Inf. Theory, vol.15, issue.2, pp.273-279, 1969.

, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, 2007.

C. Choirat and R. Seri, Estimation in discrete parameter models, Statistical Science, vol.27, issue.2, pp.278-293, 2012.