
HAL Id: hal-01901499
https://hal.science/hal-01901499

Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A review on graph optimization and algorithmic
frameworks

Alessandro Benfenati, Emilie Chouzenoux, Laurent Duval, Jean-Christophe
Pesquet, Aurélie Pirayre

To cite this version:
Alessandro Benfenati, Emilie Chouzenoux, Laurent Duval, Jean-Christophe Pesquet, Aurélie Pirayre.
A review on graph optimization and algorithmic frameworks. [Research Report] LIGM - Laboratoire
d’Informatique Gaspard-Monge. 2018. �hal-01901499�

https://hal.science/hal-01901499
https://hal.archives-ouvertes.fr

A review on graph optimization and algorithmic
frameworks

Alessandro Benfenati, Emilie Chouzenoux, Laurent Duval,
Jean-Christophe Pesquet, Aurelie Pirayre

October 19, 2018

1 Introduction
In this report, we make a review of optimization problems involving graphs and state-of-the-art
algorithms to solve them. First, we present a set of discrete optimization problems and resolution
methods for edge selection problems. Then, we address the matrix optimization problems in-
volved in the estimation of precision or covariance matrices given observations from multivariate
Gaussian distribution.

2 Discrete optimization methods for graph edge selection

2.1 Introduction and notation
Let us consider a graph G composed of two objects: nodes (or vertices) and edges (or arcs), which
tie nodes together. The set of nodes (corresponding to genes) is denoted by V = {v1, . . . , vG}.
We introduce V = {1, . . . , G} as the set of node indices. The set E refers to the set of edges,
corresponding to plausible interaction between nodes. An edge between nodes i and j is labeled
by ei,j . From these data, nodes of the graph G can be multi-valued i.e. each node vi is valued by
the vector mi. The associated unweighted adjacency matrix1 is denoted by WV = 1, where 1
refers to a matrix of size G×G full of 1. We will denote the graph G(V, E ;ω), where V is the set
of nodes and E the set of edges. From this multi-valued graph on nodes, the inference consists in
recovering true regulatory links between genes. The resulting set of true links is denoted by E∗
and the underlying graph G∗. While some methods propose to directly infer G∗ from GV , some
others require two steps:

Firstly node-node interaction scores are computed leading to a node-node interaction matrix
WE ∈ RG×G, where the element ωi,j of WE is a weight reflecting the strength of the interaction
between node i and j. The node-node interaction matrix allows to define the graph GE where
nodes are non-valued while edges ei,j are weighted by the element ωi,j of the matrix WE . In
such a case, the matrix WE defines the adjacency matrix of the graph GE . As nodes and edges
are the same in GV and GE , we can use the same notation for their respective sets of nodes and
edges.

From the fully-connected and weighted network GE , an edge selection is then performed
to recover E∗ by retaining edges having relevant weights only, ideally corresponding to true

1Matrix encoding the graph structure by setting elements to 1 when an edge is present in the graph and 0
otherwise.

1

regulatory relationships. This edge selection task is classically performed by removing all edges
whose weights ωi,j (possibly their absolute value) are lower than a threshold λ. The aim of this
section is to discuss several methods based on discrete optimization tools that allow to perform
this task efficiently.

2.2 Tresholding approach
Let us define, for each edge ei,j ∈ E with weight ωi,j , a binary label xi,j of edge presence such
that:

∀(i, j) ∈ V2 and j > i, xi,j =

{
1 if ei,j ∈ E∗,
0 otherwise.

(1)

Each label xi,j indicates the presence or the absence of the edge ei,j in the final graph G∗.
Performing a classical thresholding to select relevant edges is equivalent to defining an optimal
edge labeling x∗i,j such that:

∀(i, j) ∈ V2 and j > i, x∗i,j =

{
1 if ωi,j > λ,

0 otherwise.
(2)

This optimal edge labeling x∗ can be obtained by solving a simple regularized optimization
problem:

maximize
x∈{0,1}E

∑
(i,j)∈V2

j>i

ωi,j xi,j + λ (1− xi,j), (3)

where E is the number of edges and equals G(G − 1)/2 as the graph G is supposed undirected
and λ the regularization parameter. The first term alone would select all edges. The second
term restricts this selection to those with weights larger than λ. Hence, the threshold parameter
λ in classical thresholding becomes a regularization parameter.

2.3 Maximal flow for discrete optimization
A classical problem encountered in computer vision is image segmentation, which aims at par-
titioning an image (set of pixels) into multiple objects (subsets of pixels) sharing the same
characteristics. In other words, image segmentation aims at assigning a label to each pixel in an
image. Pixels sharing certain characteristics (intensity, color, texture, etc.) are assigned to the
same label. A large number of approaches exists under various frameworks: thresholding and
clustering, variational methods, graph partitioning methods, to name a few. Graph partitioning
methods encompass several approaches such as: normalized cuts [21], random walker [13], mini-
mum spanning tree [18] or minimum cut [9], for instance. We now focus on minimum cut models
and algorithms proposed to solve them.

An image can be seen as a structured graph, where pixels of the image are associated to
nodes. A node is classically linked by edges to its four nearest neighbors, corresponding to its
four “nearest” pixels in the cardinal directions. A variety of more complex graphs exists and
allows connections with more “nearest” neighbors such as an eight nearest neighbors structure,
for instance. Fig. 1 illustrates possible graph constructions from an image.

Weights ωi,j can be defined for each edge ei,j , and are commonly related to pixel intensities
Ii and Ij [22]:

ωi,j = exp(−β(Ii − Ij)2). (4)

2

(a) Image with 4× 4 pixels. (b) 4-connected pixel graph. (c) 8-connected pixel graph.

Figure 1: Graph representations of a 4× 4 image

From the graph represented in Fig. 1b, two special nodes are added: the source s — node with-
out entering edges — and the sink t — node without leaving edges. The new generated graph
is called a flow network Gf (or transportation network), and edge weights are called capacities.
In a flow network Gf , a cut is defined as a node partition into two disjoint subsets O and B
such that s ∈ O and t ∈ B (subsets names borrow from image processing, denoting object and
background). The capacity of a cut is obtained by summing the capacities of edges crossing the
cut. As Fig. 2 illustrates with a toy example, the minimum cut problem is thus to find an s− t
cut in Gf that minimizes the cut capacity.

s

x1 x2

t

10 6

1

8 10

O

B

(a) Cut capacity = 21.

s

x1 x2

t

10 6

1

8 10

O

B

(b) Cut capacity = 15.

Figure 2: Cuts in a transportation network:(a) Arbitrary cut and (b) minimum cut in a flow
network Gf . The cut leads to a node partitioning such that the source s belongs to a subset O
and the sink t to a subset B, for instance. The cut capacity is obtained by summing the weights
of edges crossing the cut. Finding the minimal cut capacity solved the minimum cut problem.

From a mathematical viewpoint, the minimum cut problem can be viewed as a discrete
optimization problem. Indeed, this problem aims at finding a label variable xi for each node
vi, where the label reflects the class the node belongs to. As the basic problem implies two
classes only, xi is a binary variable taking 1 or 0 values. Two nodes are linked by an edge
with a capacity ωi,j ≥ 0. These capacities reflects pixel similarity in terms of intensity, color or
texture, for instance, and drive the partitioning. For seeded image segmentation [4], a constraint
is added on specific nodes s and t such that s belongs to one class and t to the other class. This
constraint is equivalent to fixing xs, the label of s, to 1 and to fixing xt, the label of t, to 0.
Hence, the minimum cut problem is thus simply formulated as the minimization of a discrete

3

energy function:

minimize
x

∑
(i,j)∈V2

ωi,j |xi − xj |,

subject to xs = 1 and xt = 0. (5)

It has been proved in [9] that a dual problem exists and consists in maximizing a flow from
s to t in Gf . The duality minimum cut/maximal flow is exploited for image segmentation in an
approach called “Graph Cuts” in the computer vision community. In a transportation network
Gf , a flow is a function assigning to each edge a value under two conditions. The first one is a
capacity constraint: f(ei,j) ≤ ωi,j : for a given edge ei,j , the assigned value of the flow f(ei,j)
is lower or equals to the edge capacity ωi,j . When f(ei,j) = ωi,j , the edge is said saturated.
The second condition refers to a divergence-free constraint: fe(vi) = fl(vi). The sum of the flow
entering each node vi, and denoted by fe(vi), is equal to fl(vi), the sum of the flow leaving the
node vi. Hence, the problem consists in finding the maximal flow that going from s to t under
the two mentioned constraints [9]. The resulting maximum flow value is equal to the capacity of
the minimum cut. A large number of maximal flow algorithms have been proposed to solve the
minimum cut problem [7, 12, 3].

Let us now discuss on how Graph cuts can lead to a segmented image. Suppose that we aim
at partitioning an image into two groups of pixels according to their intensities such that one
group is related to the background B and the other group to an object O in the image. Thus,
each pixel node vi can be labeled by xi and can either take 0 or 1 valuation. A node label of
one corresponds to a pixel belonging to the object while a label of zero is for a pixel belonging
to the background. Now, let the transportation network Gf be the one that links all pixel nodes
to s and t with infinite weights. Capacities between pixel nodes are weights ωi,j defined as in 4,
for instance. The source s is labeled by 1 (the reference label for the object) and the sink t by
0 (and is the reference label for the background). Looking for a minimum cut in such a graph
is the same as finding a maximal flow. The maximal flow computation leads to saturated edges.
Nodes vi reaching node s without encountering saturated edges will be labeled by 1 as it is the
label of s. Similarly, nodes vi reaching node t via non-saturated edges will be labeled by 0, the
label value of t. Resultantly, a label is affected at each node and reflect the groups of pixels it
belongs to: nodes labeled by 1 encode pixels belonging to the object while nodes labeled by 0
encode pixels belonging to the background. Fig. 3 illustrates image segmentation with Graph
Cuts.

The energy function to be minimized in 5 is one of the many possible energy function that
can be solved using Graph Cuts. The generic formulation of the energy function E(x) to be
minimized via Graph Cuts for pixel-labeling problem takes the following form [14]:

E(x) =
∑
i∈V

Di(xi) +
∑

(i,j)∈V2

j>i

Vi,j(xi, xj), (6)

where the first term is a data fidelity term derived from observations and reflects the cost to
assign the label xi to the node vi (pixel pi). The second term is a pairwise penalization term
promoting spatial smoothness and encodes the cost to assign labels xi and xj to the nodes vi
and vj (pixels pi and pj), respectively.

4

O

B

xt

xs

x1 x2 x3

x4 x5 x6

x7 x8 x9

cut

(a) Initial image with seeds. (b) Cut in the flow network Gf . (c) Segmented image.

Figure 3: Image segmentation with Graph Cuts: A flow network Gf is constructed from the
graph of the initial image (a): all pixel nodes are linked to a source s and a sink t. Some pixel
nodes, called seeds, are pre-labeled either by O or B such that these nodes are associated to the
object or the background in the segmented image. After computing a maximum flow in Gf (b),
a node is labeled by the label of xs whether the node can be reached from the source s through
non-saturated edges (thick edges) or by the label of xt in the contrary case. The final labeling
x∗ leads to the segmented image (c).

2.4 Random walker for multi-class and relaxed optimization
As mentioned in the previous subsection, image segmentation is a frequently encountered problem
in computer vision. While extensions of Graph Cuts for multi-label problems can be used, another
algorithm called random walker provides an alternative. Random walker is a semi-supervised
graph partitioning algorithm. Based on a network G, valued on its edges by weights ωi,j , and
composed of a set V of G nodes, let us define by VM a subset of K pre-labeled (marked/seeded)
nodes. We can thus define the complementary subset of unlabeled nodes VU . Knowing the la-
bel of the nodes in VM , the random walker algorithm assigns a label to the remaining nodes in VU .

In more details, let K ∈ N be the number of possible label values of nodes from VM . In
addition, let yi ∈ {1, . . . ,K} be the label variable for node vi and y ∈ NG be the vector gathering
the label variables of the G nodes. Defining a cost function E(y) as follow

E(y) =
∑

(i,j)∈V2

ωi,j(yi − yj)2, (7)

the random walker algorithm solves the following constrained minimization problem:

minimize
y

E(y),

subject to yi = k, ∀vi ∈ VM . (8)

In [13], the cost function E(y) in 8 can be re-expressed as a combinatorial formulation of the

5

Dirichlet integral:
E(y) =

∑
(i,j)∈V2

ωi,j(yi − yj)2 = y>Ly,

where L is the combinatorial Laplacian matrix of the graph G, defined as:

Li,j =


di if i = j,

−ωi,j if vi and vj are adjacent nodes,
0 otherwise,

(9)

with di the degree of node vi. Taking into account the constraint on pre-labeled nodes in 8,
only the labels of unseeded nodes have to be determined, and the energy to be minimized in
Problem 8 can be decomposed into:

E(yU) =
[
y>M y>U

] [LM B
B> LU

] [
yM
yU

]
= y>MLMyM + 2y>UB

>yM + y>ULUyU , (10)

where, in this context, yM and yU correspond to probability vectors of seeded and unseeded
nodes, respectively. The unique critical point is obtained by differentiating the energy E(yU)
with respect to yU

∂E(yU)

∂yU
= B>yM + LUyU (11)

thus yielding
LUyU = −B>yM , (12)

which is a system of linear equations with |VU | unknowns. Note that if the graph is connected or
if every connected component contains a seed, then 12 will be nonsingular and a unique solution
will be found.

Let us define the set of labels for the seed nodes as a function Q(vi) = k, for all vi ∈ VM ,
where k ∈ {1, . . . ,K}. For each label k, a vector of markersM (k) of size |VM | can thus be defined
such that, for each node vi ∈ VM

m
(k)
i =

{
1 if Q(vi) = k,

0 if Q(vi) 6= k.
(13)

The marker matrix M = [M (1), . . . ,M (K)] thus gathers all the vector of markers. By analogy,
let us define the matrix Y = [Y (1), . . . , Y (K)], where for all k ∈ {1, . . . ,K}, the vector Y (k) is of
size |VU |. For each node vi ∈ VU , the component y(k)

i denotes the probability for the node vi to
be assigned to the label k. Probabilities in Y are unknown and have to be computed. Based on
Equation 12, they can be computed by solving the following system of linear equations:

LUY = −B>M. (14)

This strategy is equivalent to solving K binary-labeling sub-problems instead of solving a K-
labeling problem. Nevertheless, dealing with probabilities enforces a sum-to-one constraint for
each node i ∈ {1, . . . , G} i.e.

∀i ∈ {1, . . . , G},
K∑
k=1

y
(k)
i = 1. (15)

6

This implies that only K − 1 systems of linear equations must be solved. Once probabilities at
each node and for each label are computed, a final labeling has to be assigned. For this purpose,
the label given by the maximal probability is assigned to each node:

∀i ∈ {1, . . . , G}, y∗i = arg max
k∈{1,...,K}

y
(k)
i . (16)

Fig. 4 illustrates how the random walker algorithm can segment an image in 3 classes. It can
be interesting to view how the random walker algorithm assigns an unseeded pixel to a label.
Indeed, an elegant analogy can be draw. Given a weighted graph, if a a random walker leaving
the pixel is most likely to first reach a seed bearing label s, assign the pixel to label s.

7

2

3

1

(a) Image with seeds.

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?1

2

3

(b) 3-labeling problem.

1

0

0

0.76

0.95

0.86

0.92

0.03

0.32

0.11

0.11

0.05

0.020.030.29

0.20

(c) First sub-problem.

0

1

0

0.16

0.04

0.09

0.07

0.95

0.45

0.58

0.03

0.31

0.180.160.03

0.24

(d) Second sub-problem.

0

0

1

0.08

0.01

0.05

0.01

0.02

0.23

0.31

0.86

0.64

0.800.810.68

0.56

(e) Third sub-problem.

1 1

1

1

1

2

2

2

2 3

3

3

333

3

(f) Random walker output. (g) Segmented image.

Figure 4: Image segmentation with random walker: On the initial image to be segmented (a),
three labels valued by 1,2 and 3 are defined. The graph representation of the image is represented
in (b), where edges are valued by weights from a function of the intensity gradient. The multi-
labeling problem in (b) is decoupled into 3 sub-problems from (c) to (e), where for each of them,
the label of the corresponding markers is set to 1 while keeping the others equal to 0. Assignment
probabilities are then computed for the unlabeled nodes. They correspond to the probability
that a random walker, starting at each node first reaches the pre-labeled node currently set to
unity. The final graph partitioning in (f) is obtained by assigning to each node the label that
corresponds to its greatest probability, yielding the segmented image (g).

3 Graph inference with matrix optimization methods

3.1 Problem statement
The problem of covariance selection was originally studied in [5], and it has strong connection with
the problem of graph estimation. Let suppose to have 1, . . . , p nodes, some of them connected

8

by a link, or edge: one can represents the connection between nodes by a matrix C, in which
the element cij 6= 0 if the node i and the node j are connected. It is obvious that the diagonal
elements cii are always different from zero, since they represent a loop around the i–node. An
edge between two nodes i and j is absent (i.e. cij = 0) if these two nodes are conditionally
independent given all the other nodes.

(a) A graph


1.0204 −0.1020 −0.1020 0
−0.1020 1.0204 0.0204 −0.1020
−0.1020 0.0204 1.0204 −0.1020

0 −0.1020 −0.1020 1.0204


(b) The matrix describing the graph.

Figure 5: The edges between nodes of the graph on the left are described in the matrix C on the
right: the node 1 and 2 are linked, hence c12 = c21 6= 0. This example is taken from [16].

Let consider now a multivalued random variable X = {X1, X2, . . . , Xp}, with Gaussian dis-
tribution

N (0,Σ) =
1√

(2π)p|Σ|
exp

(
−1

2

〈
X ,Σ−1X

〉)
(17)

where Σ is the matrix of covariances (Σij = Cov(Xi, Xj)) and | · | denotes the determinant of a
matrix.
Let suppose to be given of n realizations X1, X2, . . . , Xn of X , and furthermore the covariance
matrix is unknown. The classical way to obtain an estimation of Σ is to maximize the log–
likelihood of the products of the Gaussian distribution computed in the n realizations:

Σ̂ = arg max
A�0

log

(
n∏
i=1

1√
(2π)p|A|

exp

(
−1

2

〈
Xi, A−1Xi

〉))

Considering the empirical covariance matrix S = 1
n

∑n
i=1

〈
Xi, Xi

〉
, performing the computation

leads to the maximization problem

Ĉ = arg max log |C| − trace(SC)

where actually the matrix C is the inverse of the estimated covariance matrix. C is the precision
(or concentration) matrix which describes the conditional independences between the component
of X : cij = 0 means that the two random variables Xi and Xj are conditionally independent
given all other variables (see [26]).

In various applications, one can consider the i–th node of a graph as the realization of a Gaus-
sian random vaiableXi with distributionN (0, σ2

i); when the mean is not zero, i.e. Xi ∼ N (µ, σ2),
a linear shift Xi−µ clearly puts the discussion in the mentioned case. It is natural hence to con-
sider a multivalued random variable X with a Gaussian distribution N (0,Σ): each component
of X represents a node on the graph. Hence, the problem of estimate the concentration matrix

9

of a graph is strictly linked to the problem of the covariance matrix estimation. See [24, 15, 8]
for more statistical proprieties of this two connected problems.

Another way to get to the same maximization problem is to consider the Bregman divergence:
given a strictly convex function g defined on the set of matrices, the Bregman divergence of g at
B ∈Mn×m(R) is

D(A‖B) = g(A)− g(B)− 〈∇g(B), A−B〉 , A ∈Mn×m(R)

Considering the log–determinant barrier function defined on S++

g(A) =


− log |A| if A � 0

+∞ otherwise

Then, the problem is estimating C given an initial approximation of it C̃ by minimizing the
Bregman divergence of g at C̃:

Ĉ = arg min
C�0
− log |C|+ trace(CC̃−1)

and considering C̃−1 = S, where S is the empirical covariance matrix, one is led to the mini-
mization (or maximization, by a simple switch of sign) problem.

3.2 State-pf-the-art approaches
Solving simply arg max log |C| − trace(SC) leads to the obvious solution Ĉ = S−1, which in case
of small n is not a reliable estimation of Σ; moreover, taking a look at the graph model, on
which the aim of the present survey is focused, one wants C to be sparse, i.e. the number of
edges must be very small. In order to enforce this characteristic on the computed solution, an `0
regularization term is added to the objective function appearing in the maximization problem,
but unfortunately this term makes the problem non–convex. A little trick to overcome this
difficult is to take the convexification of the `0 term, i.e. the `1 norm which however promotes
sparsity in the final solution. Hence, the problem to be solved is

Ĉ = arg max
C�0

log |C| − trace(SC)− µ‖C‖1 (18)

which is called LASSO estimation in the literature.

In the past years, different algorithms with different approaches were proposed: in this survey
the starting point are the works [11] and [1], which are based on a dual formulation of the
problem. Trying to follow the chronological appearance, the projected subgradient method [6]
and the application [26] of a Vandenberghe’s algorithm [23] are presented. The last algorithm
shown is the application of the Alternating Direction of Multipliers Method (ADMM) presented
in [20, 2].

3.2.1 Block Coordinate Descent Algorithm

The main idea in [1] consists in substituting the `1 norm appearing in (18) with its conjugate
function

‖C‖1 = sup
U
〈U,C〉 − ‖U‖∗1 = max

‖U‖∞≤1
trace(UC)

10

getting a the primal–dual formulation

max
C�0

min
‖U‖∞≤µ

log |C| − trace(C(S + U)) (19)

Exchanging he max and the min, and imposing the first order conditions related to C, ones
obtains that

−C−1 − (S + U) = 0↔ C = (S + U)−1

moreover, setting W = U + S, the original problem becomes

Σ̂ = argmax‖W−S‖∞≤µ log |W | (20)

In [1, Thh 1] it is proved that for any µ the solution of (20) exists and its unique, and moreover
it as bounded eigenvalues. In order to get a full insight into the algorithm, let consider a block
symmetric matrix M :

M =

(
A B
B> D

)
.

By using the Shur complement, the determinant of such matrix is easily computed:

|M | = |D| · |A−B>D−1B|

Let now adopt the following notation:

? let Wṗṗ be the submatrix of W from which the p–column and the p–th row were removed;

? let wp be the p–th row (which is identical to the p–th column, since W is symmetric), with
the p–th element suppressed;

? as usual, let Wpp the element of W with p index of row and column.

Thus, we can write

W =

(
Wṗṗ wp
w>p Wpp

)
The Shur complements then tells that2

|W | = |Wṗṗ| · |Wpp − w>p W−1
ṗṗ wp|

and since |Wpp−w>p W−1
ṗṗ wp| is just a real number, maximizing log |W | corresponds to minimize

w>p W
−1
ṗṗ wp. The procedure shown consists in considering the j–th column of W , performing the

minimization procedure

ŷ = arg min
y
y>W−1

j̇j̇
y s.t. ‖y − Sj‖∞ ≤ µ.

After a sweep on all the columns, the convergence condition is checked.

The regularization parameter is chosen as in the following formula:

µα = max
i>j

(σi, σj)
tn−2(α/2p2)√

n− 2 + t2n−2(α/2p2))

2W .

11

Algorithm 1 Banerjee, 2008
1: Choose µ, set W (0) = S + µ I;
2: for k = 0, 1, 2, . . . do
3: for j = 0, 1, 2, . . . , p do
4: Let W (j−1) the current iterate. Solve

ŷ = arg min
y
y>W−1

j̇j̇
y s.t. ‖y − Sj‖∞ ≤ µ. (21)

5: W (j) is W (j−1) with column/row ŷ

6: end for
7: Set W (0) = W (p)

8: Check convergence condition

trace(
(
W (0)

)−1

S)− p+ µ

∥∥∥∥(W (0)
)−1

∥∥∥∥
1

≤ ε

9: end for

where tn−2(α) denotes the (100 − α)% point of the Student’s distribution for n − 2 dof. With
such a parameter, one has that

P (∃k ∈ {1, . . . , p}|Cµk * Ck) ≤ α

The convergence results for 1 is shown in [1, Thh 3], where it is also assured that theW s computed
during the procedure are all definite positive. A very important fact about the regularization
parameter is that for any k ∈ {1, . . . , p}, if µ ≥ |Skj | for all j 6= k, then one can show that column
and row k of the solution of (20) are zero, excluding the diagonal element. The implications of
this result consist in observing that, for a given second moment matrix S, if µ is chosen such
that the condition on S is met for some column k, then the k–th variable is estimated to be
independent of all other variables in the distribution. In particular, if µ ≥ |Skj | for all k > j,
then all variables are estimated to be pairwise independent.

Setting Q ≡
√
W

(j−1)

j̇j̇
, b = 1

2Q
−1Sj , taking the dual of (21) is equivalent to solve

min
θ
‖Qθ − b‖22 + µ‖θ‖1

which is a LASSO formulation. Hence, the coordinate descent procedure can be viewed as a
sequence of LASSO problems. This approach is very similar to the one of [17], but two differences
are evident:

? a multiple of the identity matrix is added to the empirical covariance matrix, in order to
obtain the uniqueness of the solution without any other requirements;

? the matrix W (j−1)

j̇j̇
is never a minor of S, it is updated at each inner step.

Using Nesterov’s method [19], a theoretical complexity bound of O(p4.5ε) is proved, where ε is
the desired tolerance.

12

3.2.2 LASSO estimation on the dual problem

In [1] it is shown the connection between the dual formulation of (18) and a LASSO formulation,
pursuing the solution of the dual problem with a coordinate descent algorithm. In [11], instead,
the LASSO problem is solved in a very cheap way. In fact, the minimization problem to be
solved is

min
θ

1

2
‖W 1/2

ṗṗ θ − b‖22 + µ‖θ‖1 (22)

with the minor difference b = W
−1/2
ṗṗ Sp. It is proved, with some elementary computation, that

if θ solves (22), than β = Wṗṗθ solves also arg miny y
>W−1

ṗp y s.t. ‖y − Sp‖ ≥ µs. The main
point of [11] is that (22) looks like a LASSO estimation. In fact, if Wṗṗ = Sṗṗ, then the solution
θp is exactly the LASSO estimate of the p–th variable on the others, hence it recalls the [17]
procedure. But since the matrix W is updating, due the sweep on the columns, it is not the
case. The general procedure is depicted in Algorithm 2. The inner problem (23) can be easily

Algorithm 2 Friedman, 2008
1: Choose µ, set W = S + µ I;
2: for k = 0, 1, 2, . . . do
3: for j = 0, 1, 2, . . . , p do
4: Consider Wṗṗ and the relative Sp. Solve

θ̂ = arg min
θ

1

2
‖W 1/2

ṗṗ θ − b‖22 + µ‖θ‖1 (23)

5: β̂ = Wṗṗθ̂

6: Fill W with the p–th row and p–th column using β̂
7: end for
8: Check convergence condition
9: end for

solved by coordinate descent [10, 25]: in fact, setting for sake of clearness V = Wṗṗ and u = Sp,
the solution is computed componentwise as

θj =
1

Vjj
Soft

uj −∑
k 6=j

Vkjθk, µ


where Soft (x, τ) = sign(x) max{|x| − τ, 0} is the soft threshold operator. The interest lies
in computing the concentration matrix C = W−1 (note that the dual problem estimates the
covariance matrix): it can be easily done by some simply calculation:

WC = I⇔
(
Wṗṗ wp
w>p Wpp

)(
Cṗṗ cp
c>p Cpp

)
=

(
I 0

0> 1

)
hence
Wṗṗcp + wpCpp = 0

w>p cp +WppCpp = 1

→


cp = −W−1

ṗṗ wpCpp

Cpp = 1/
(
Wpp − w>p W−1

ṗṗ wp

) →
(
θ̂ = W−1

ṗṗ wp

)
→


cp = −θ̂Cpp

Cpp = 1/
(
Wpp − w>p θ̂

)
All these computations can be done during each step of the procedure, but the cheapest way is
to store the valued for θ̂ and then compute the inverse matrix when convergence is achieved.

13

3.2.3 Gradient Projection approach

In the paper [6], the projected gradient method is applied: suppose that g ∈ C1, then an iterative
procedure to solve

x = arg max
x∈Ω

g(x)

where Ω represents a set of constraints, is

xk+1 = ΠΩ

(
xk + t∇g(xk)

)
,

where t is the step size. In order to apply this procedure to (18), let rewrite it as

− log |C|+ trace(SC) +
∑
ij

µij |cij |

where in this formulation the regularization parameter is a matrix; one can recover the previous
cases imposing µij = µ ∀i, j. Imposing a new constrain Z = C, the Lagrangian formulation of
such problem is

− log |C|+ trace(SC) +
∑
ij

µij |Zij |+ trace(W (C − Z))

being W is the Lagrangian parameter. Since the Lagrangian is separable, imposing first order
conditions on C the dual formulation of the problem becomes thus

max log |W + S| s.t. ‖Wij‖1 ≤ µij .

The desired constraint on the positive definiteness on the solution is assured by the log det func-
tion, which acts as a barrier function on the set S++. The dual formulation of the problem via
the Lagrangian enables to prove the boundness from below and the uniqueness of the solution
as long as µij > 0 for i 6= j and µii ≥ 0 [6, Lemma 1].
The procedure is shown in Algorithm 3. In this particular case, the parameter t is easily com-
puted by a line search based on the second order approximation of the objective function: if the
increase is not sufficient, the step size is decreased.
This algorithm is easily extended in presence of block structures in the concentration matrix:
the only difference between this block algorithm and Algorithm 3 regards the parameter t. In-
troducing the block structures does not allow to compute it by a line search, hence an Armijo
procedure is adopted.

3.2.4 Interior Point Method

In [26] the covariance selection problem is solved by considering the original formulation (18)
with the regularization of the off–diagonal elements of C:

min
C�0

trace(SC)− log (|C|) s.t
∑
i 6=j

‖cij‖1,off < t. (24)

(which can be rewritten as trace(·)− log | · |+ λ‖ · ‖1,off). The proposal is to employ the method
developed in [23], which aims to solved

min
x∈Rn

〈b, x〉 − log |G(x)|

s.t. G(x) � 0

s.t. F (x) � 0

14

Algorithm 3 Duchi, 2008
1: Choose µ, Bµ = {W |Wij < µij |}, set W ∈ Bµ and W + S � 0, Wii = µii, set tolerance ε;
2: for k = 0, 1, 2, . . . do
3: G = (S +W)−1

4: Impose constraints on the gradient in order to satisfy the constraints

Gii = 0

Gij = 0 for all Wij = µij , Gij > 0

Gij = 0 for all Wij = −µij , Gij < 0

5: Line search for t:

t =
trace((S +W)−1G

)
trace((S +W)−1G(S +W)−1G)

6: while log |S + ΠBµ (W + tG) | < log |S +W | do
7: t← t/2

8: end while
9: W = ΠBµ (W + tG)

10: C = (S +W)−1

11: Compute duality gap
η = trace(SC) +

∑
ij

µij |Cij| − n

12: Check convergence η < ε

13: end for

where F (x) = F0 + x1F1(x) + x2F2(x) + · · ·+ xnFn(x), G(x) = G0 + x1G1(x) + x2G2(x) + · · ·+
xnGn(x) and Gi � 0, Fi � 0 o all i. Writing (24) as

min
C

2
∑
i<j

sijcij +
∑
i

siicii − log

∣∣∣∣∣∣
∑
i

ciiI
i +
∑
i<j

cijI
ij

∣∣∣∣∣∣
s.t.

∑
i

ciiI
i +
∑
i<j

cijI
ij � 0

s.t. t− 2
∑
i<j

sign(cij)cij ≥ 0, sign(cij)cij ≥ 0

where Ii is a matrix full of zeros except the diagonal element in i–th position which is equal to
1, Iij is a matrix full of of zeros except the elements in position i, j and j, i which are equal to 1.
Let Ĉ the LASSO estimator of the concentration matrix: the following result holds.
If
√
nλ→ λ0 for n→∞, the LASSO–type estimator is such that

√
n(C − Ĉ)→ arg min

U=U ′
V

where

V = trace(UΣUΣ) + trace(UW) + λ0

∑
i 6= j (uijsign(cij)I(cij 6= 0) + |uij |I(cij = 0))

15

in which W is a random symmetric p × p matrix such that vec(W) ∼ N (0,Λ), where Λ is such
that

Cov (wij , wkl) = Cov (XiXj , XkXl)

Moreover, Lemma 3 in [26] states that the proposed algorithm always converges and furthermore
converges to a solution of (24). Regarding the selection of the penalty parameter, the author
propose to employ a Bayesian information criterion, but is not clear how they calculate it.

An interesting result lies in [26, Lemma 4]: it states that by considering the second order
approximation of (24), the solution of the penalized problem can be approximated by the solution
of

min
C

trace((C − S−1)S(C − S−1)S) + λ‖C‖1 (25)

Recalling the method proposed in [17], let consider the matrix Θ in which each column j is the
solution of the j–th subproblem; let moreover be Θii = 1. Then Θ is the unconstrained solution
of (25) over the p× p matrices with diagonal elements fixed to 1.

3.2.5 Alternating Direction of Multipliers algorithm

A very famous and performing algorithm for convex problem is the Alternating Direction of
Multipliers Method (ADMM), which allows to remove the constraints by using the Lagrangian
multiplier and to compute with a Gauss–Siedel strategy the variables coming into play. Given a
general problem

min f(x) s.t. g(x) = b

the ADMM version of it can be written as

min f(x) + 〈λ, g(x)− b〉+
1

2γk
‖g(x)− b‖22

with a more compact form (adding and subtracting suitable terms) min f(x)+ 1
2γk
‖g(x)−b+λ‖22.

Let’s recall the problem to be solved

min
C∈S++

− log |C|+ trace(SC) + µ‖C‖1

and consider a new constraint: C ∈ C = {C ∈ S+|C � α
2 }, with α = 1

‖S‖+nµ (see [20]). This new
constraint allows the Lipschitz constant of gradient of log | · | to be 1

α2 . The new formulation of
the problem is hence

min
C∈C,Y ∈C

− log |C|+ trace(SC) + µ‖Y ‖1 (26)

s.t. C = Y (27)
(28)

Some preliminary observations:

? the sequence γk has to be decreasing;

? the limit for the Lipschitz constant is α−2: hence it could be very large. γk can ot be
chosen smaller that α2, otherwise the solution is hard to reach;

16

? the request for the Lipschitz–ness of the gradient is due to the fact that the rate of conver-
gence is

Y k − C∗ ≤ ‖C
0 − C∗‖2

2µk

and the number of iteration for reaching a give tolerance of ε is O
(

1
ε

)
.

The procedure is depicted in Algorithm 4

Algorithm 4 Scheinberg, 2010
1: Choose γ0, λ0, C0, Y 0;
2: for k = 0, 1, 2, . . . do
3: Set γk+1 ≤ γk
4: Compute Ck+1

Ck+1 ← arg min
C∈C
− log |C|+ trace(CS) +

1

2γk
‖C −

(
Y k + λk

)
‖22

5: if ‖Ck+1‖1 > ‖Ck‖1 + 1
2γk
‖Ck+1 −

(
Y k + λk

)
‖22 then

6: Ck+1 = Y k

7: Compute Y k+1

Y k+1 ← arg min
Y
‖Y ‖1 +

1

2γk
‖Ck+1 −

(
Y + λk

)
‖22

8: λk+1 ← 1

Ck+1
−
(
Ck+1 − Y k+1

)
λk

9: Check convergence
10: end for

Remark: In computing Y k+1 the constraint Y ∈ C is not included since the computation of it
is very hard: since the procedure has to force X = Y , it exists k > k such that Xk = Y k, then
Y k ∈ C.
Even if the algorithm looks quite complicated, the solutions of the inner problems are easy to
compute. Let us consider the first order condition for the first one:

1

γk
C − 1

C
=

1

γk

(
Y k + λk − S

)
;

since C ∈ C, one can compute the SVD of the rsh term of the previous equation

1

γk

(
Y k + λk − S

)
= QDQ>

where Q>Q = QQ> = I; thus

Q>
(

1

γk
C − 1

C

)
Q = (Q>CQ ≡ C̃) =

1

γk
C̃ − C̃−1 = D.

Solving the second degree equation, the diagonal elements of C̃ are

C̃ii =
γkdii +

√
γ2
kdii + 4γk

2

17

and performing the multiplication by Q and Q> C = QC̃Q>.

The computation of Y k+1 involves a simple soft thresholding, thanks to the fact that the con-
straint on C is not included:

Y k+1 = Softγk
(
Ck+1 + λk

)
.

18

References
[1] Onureena Banerjee, Laurent El Ghaoui, and John Lafferty. Model selection through sparse

maximum likelihood estimation. Journal of Machine Learning Research, 2008.

[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Found. Trends Mach. Learn., 3(1):1–122, jan 2011.

[3] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell.,
26(9):1124–1137, Sep. 2004.

[4] Yuri Boykov and Marie-Pierre Jolly. Interactive organ segmentation using graph cuts. In
Proc. Medical Image Computing and Computer-Assisted Intervention Conf., pages 276–286.
Springer, 2000.

[5] A Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

[6] J. Duchi, S. Gould, and D. Koller. Projected Subgradient Methods for Learning Sparse
Gaussians. In Proceedings of the Twenty-fourth Conference on Uncertainty in AI (UAI),
2008.

[7] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. J. ACM, 19(2):248–264, Apr. 1972.

[8] D M Edwards. Introduction to graphical modeling. Springer, 2000.

[9] L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canad. J. Math.,
8:399–404, Jan. 1956.

[10] Jerome Friedman, Trevor Hastie, Holger HÃ¶fling, and Robert Tibshirani. Pathwise coor-
dinate optimization. Technical report, Annals of Applied Statistics, 2007.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 9(3):432–441, jul 2008.

[12] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In Proc.
ACM Symp. Theor. Comput., pages 136–146, Berkeley, CA, USA, May 28-30, 1986.

[13] L. Grady. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
28(11):1768–1783, Nov. 2006.

[14] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?
IEEE Trans. Pattern Anal. Mach. Intell., 26(2):147–159, Feb. 2004.

[15] Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996.

[16] Nicolai Meinshausen. A note on the lasso for gaussian graphical model selection. Statistics
& Probability Letters, 78(7):880 – 884, 2008.

[17] Nicolai Meinshausen and Peter Bühlmann. High dimensional graphs and variable selection
with the lasso. ANNALS OF STATISTICS, 34(3):1436–1462, 2006.

19

[18] Fernand Meyer. Minimum spanning forests for morphological segmentation. In Jean Serra
and Pierre Soille, editors, Mathematical Morphology and Its Applications to Image Process-
ing, pages 77–84. Springer, Dordrecht, 1994.

[19] Yu Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–
152, may 2005.

[20] Katya Scheinberg, Shiqian Ma, and Donald Goldfarb. Sparse inverse covariance selection
via alternating linearization methods. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems
23, pages 2101–2109. Curran Associates, Inc., 2010.

[21] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 22(8):888–905, 2000.

[22] M. Unger, T. Pock, W. Trobin, D. Cremers, and H. Bischof. TVSeg - interactive total
variation based image segmentation. In Proc. Brit. Machine Vis. Conf., pages 40.1–40.10,
Leeds, UK, Sep. 1-4, 2008. British Machine Vision Association and Society for Pattern
Recognition.

[23] Lieven Vandenberghe, Stephen Boyd, and Shao po Wu. Determinant maximization with
linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications,
19:499–533, 1998.

[24] Joe Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley Publishing, 2009.

[25] Tong T. Wu and Kenneth Lange. Coordinate Descent Algorithms for Lasso Penalized
Regression. The Annals of Applied Statistics, 2(1):224–244, 2008.

[26] Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

20

