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Abstract

Explicit Model Predictive Control often has a complex solution in terms of the number of regions required to define the solution
and the corresponding memory requirement to represent the solution in the online implementation. An alternative approach
to constrained control is based on the use of controlled contractive sets. However, polytopic controlled contractive sets may
themselves be relatively complex, leading to a complex explicit solution, and the polytopic structure can limit the size of the
controlled contractive set. This paper develops a method to obtain a larger controlled contractive set by allowing higher order
functions in the definition of the contractive set, and explores the use of such higer-order contractive sets in controller design
leading to a low complexity explicit control formulation.
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1 Introduction

The ability to capture operational constraints is of vital
importance in controller design for real-life applications.
It is reasonable to state that the ability to handle con-
straints in a transparent way is what sets the industrially
very successful Model Predictive Control (MPC) [13]
apart from the theoretically elegant - but less industri-
ally successful - LQG control. Standard MPC solves an
optimization problem online, but due to the computa-
tional complexity of MPC it is limited to the systems
which are not safety critical (due to the use of complex
and thus error prone optimization software), have suf-
ficiently slow dynamics, and/or can afford high perfor-
mance computational hardware [5]. Explicit MPC [1] to
some degree resolves this problem and allows the use of
low-complexity computing code in the online implemen-
tation. Unfortunately, the explicit solution to standard
MPC problems often has a highly complex solution, and
even in cases when the explicit solution can be found in
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acceptable time the implementation of the solution on
the online control hardware may require excessive mem-
ory. Low complexity constrained control with modest
computational complexity, small memory requirements
and simple, thus verifiable code in the online implemen-
tation is therefore desired.

One approach to such low complexity constrained con-
trol is based on the use of a controlled contractive set.
The complexity of the solution will then depend on the
complexity of the contractive set. Therefore, obtaining a
controlled contractive set of low complexity is essential
for this approach to formulate low complexity explicit
constrained control. A maximal polyhedral controlled
contractive set with a given contraction factor can be ob-
tained by the iterative procedure described in [3]. How-
ever, the complexity of the contractive set thus obtained
may be very high. A non-iterative procedure for obtain-
ing a contractive set of low complexity is proposed in [5].
The approach is not applicable to systems with identical
modes in series (corresponding to a non-diagonalizable
A-matrix in the system’s state space representation).
Furthermore, the contractive set obtained in [5] is of
fixed complexity, which does not allow trading off the
complexity against the size of the contractive set. An
optimization based technique has been proposed in [7]
which allows the trading off complexity versus the size of
the set. A solution to the optimization problem in [7] not
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only reduces the on-line computational complexity of the
resulting constrained control, but also ensures significant
reduction in the memory required to store the explicit
solutions. However the method explained in [7] is highly
non-convex, which makes it difficult to use for finding
sufficiently large contractive sets for higher dimensional
systems. Alternatively, ellipsoidal contractive sets with
corresponding linear control laws can be computed, but
the measure of these sets is limited by the linear structure
of the control law and the inherent conservatism of the
corresponding quadratic Lyapunov function. This paper
proposes a method to obtain an enlarged contractive set
by defining the contractive set using a function of vari-
able degree (a degree which is assumed to be greater or
equal to 2, thus including the quadratic forms as a par-
ticular case), and also allowing for higher order control
laws. Note that the function defining the controlled con-
tractive set can be interpreted as controlled Lyapunov
function for the closed loop system.

In Section 2, the controller design using controlled con-
tractive sets is presented, along with the formulation for
finding the largest ellipsoidal controlled contractive set
fulfilling state and input constraints. Section 3 describes
a controller design which leads to the determination of
larger contractive sets. The controller design is inspired
by the results in [10], but unlike the respective work,
the controller will be defined using only two regions.
The method described in Section 3 is applied to illustra-
tive examples and the results are described in Section
4, which is followed by a discussion and conclusions in
Section 5.

2 Contractive Sets

Consider the constrained control of the linear discrete
time system:

xk+1 = Axk +Buk (1)

with xk ∈ <nx , uk ∈ <nu representing the current state
and input, respectively, while xk+1 is the next time step
state. The system is subject to input constraints U =
{uk|Huuk ≤ 1}, with Hu ∈ <npu×nu .

Definition 1 Given a function V : <nx → <, the level
set of V (x) for a scalar α is the set Sα = {x|V (x) ≤ α}.

Proposition 1 Consider a function V (x) : <nx → <
satisfying the following properties:

A1 positive definite, with V (0) = 0,
A2 continuous,
A3 radially unbounded, i.e., V (x)→∞ as ‖x‖ → ∞.

Then

(1) All level sets Sα exist and are bounded for all 0 ≤
α <∞.

(2) If β < α, Sβ ⊂ Sα.

Proof:
From A1 it follows that the level sets Sα = ∅ if α <
0. Claim (1) follows directly from A1, A2 and A3. For
claim (2) we note that Sβ ⊆ Sα is a consequence of
Definition 1. Next, consider two points x1 and x2 with
V (x1) = V (x2) + δ for some δ > 0. Then by applying
the Mean Value Theorem, continuity of V (x) implies
that the points x1 and x2 must be separated by some
nonzero distance. Hence, we get strict inclusion, Sβ ⊂ Sα
if β < α. 2

Definition 2 Consider a continuous and radially un-
bounded function V : <nx → <≥0. A level set Sα is
controlled γ-contractive with respect to (1) for a given
γ ∈ (0, 1), if ∀xk ∈ Sα,∃uk ∈ U such that xk+1 ∈ Sγα.

The functions V (x) fulfilling the assumptions of Propo-
sition 1 are natural ingredients in control designs enforc-
ing contractiveness properties, as for example in the low
complexity optimization based formulation

min
uk,xk+1

1

2
xTk+1Qxk+1 +

1

2
uTkRuk (2a)

subject to
xk+1 = Axk +Buk (2b)

Huuk ≤ 1 (2c)

V (xk+1) ≤ γV (xk) (2d)

where Q and R represent the state and input weights.

Consider next the bounded state constraints xk ∈ X
with X = {xk|Hxxk ≤ 1} where Hx ∈ <px×nx .

Proposition 2 Let V (x) be a function fulfilling assump-
tions A1−A3 of Proposition 1, and let V (x) = α, Then,
if

(1) the corresponding level set Sα is controlled γ-
contractive, and

(2) Sα ⊆ X

the control action obtained as a solution of (2) guaran-
tees an exponentially stability of the closed loop which in
addition fulfills input and state constraints over Sα.

Proof:
Follows directly from Proposition 1 and Definition 2. 2

As a result of Proposition 2, the function V (x) is a Lya-
punov function for the system (1) inside the set Sᾱ,
where ᾱ = maxα such that Sα ⊆ X .
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In [5] and [7], a controller based on (2) with polytopic
controlled contractive sets S = {xk|Fxk ≤ 1}were stud-
ied based on a piecewise linear function

V (xk) = max{Fxk} (3)

Using the function specified as in (3), the optimiza-
tion (2) becomes a standard quadratic program, which
may be solved parametrically with xk and V (x) as pa-
rameters. This is done by imposing a virtual parame-
ter αk = V (xk) before solving the optimization in (2)
at time k. The constraint in (2d) then simply becomes
F (Axk + Buk) ≤ γαk. As the total number of con-
straints and the number of degrees of freedom are typi-
cally quite modest in (2) compared to a classical MPC
problem utilizing a longer prediction horizon, the para-
metric solution is also of modest complexity. However,
this approach suffers from the drawbacks described in
the Introduction, and this paper therefore focuses on al-
lowing more general types of function V (x), to obtain
a larger operating region with modest online computa-
tional complexity and memory requirement for the con-
trol.

In the developments below, two ellipsoidal controlled
contractive sets will be important as terms of compari-
son:

• The set Ω = {x ∈ <nx |xTP−1x ≤ 1}, the largest
controlled γ-contractive set that can be obtained using
linear state feedback.
• The set Ωuc = {x ∈ <nx |xTP−1

uc x ≤ 1}, the ellipsoidal
set where γ-contractiveness is achieved with the linear
state feedback uk = Kucxk.

Constraints in both states and inputs are accounted for
in the calculation of both Ω and Ωuc. These sets can be
calculated using well known techniques based on Linear
Matrix Inequalities, see, e.g., [2] or [8] for details.

While the set Ωuc can be found for any given controller 1

Kuc, for the subsequent use in this paper it will be
considered to be the unconstrained solution to (2), see
the inverse optimality arguments in [9] for the choice of
weights Q and R. When ignoring the input and contrac-
tivity constraints, (2) yields the controller

uk = −(R+BTQB)−1BTQA︸ ︷︷ ︸
Kuc

xk

For notational convenience in the following, we will de-
fine P1 = P−1 and P0 = P−1

uc .

1 For subsequent developments to make sense, the con-
troller Kuc should clearly be designed such that the uncon-
strained closed loop system is γ-contractive, i.e., such that
max |eig(A+BK)| ≤ √γ.

3 Controller Design for Higher Order Contrac-
tive Set

3.1 Approximate optimization problem solution

Despite the computational advantages of the ellipsoidal
sets recalled above, the associated linear feedback and
the quadratic structure of the Lyapunov function limit
the volume of the contractive set. Larger contractive sets
can be obtained by increasing the complexity of the Lya-
punov function. A natural approach is to focus on poly-
nomial forms of higher order. By relaxing the control
structure to allow the input to have higher order depen-
dency on the state, further relaxations on the contrac-
tive set can be obtained.

Using (2b) to eliminate xk+1 from the optimization for-
mulation, (2) may be reformulated as Problem Pu:

min
uk

1

2
uTkHuk + xTk Fuk (4a)

subject to
Huuk ≤ 1 (4b)

V (xk+1) ≤ γV (xk) (4c)

where H = (BTQB +R), F = ATQB.

The Lagrangian function for Problem Pu is

L(uk) =
1

2
uTkHuk + xTk Fuk

+λTu (Huuk − 1) + λq(V (xk+1)− γV (xk))
(5)

The corresponding KKT conditions are

Huk + FTxk +HT
u λu + V 1

k+1(uk)λq = 0 (6a)

Huuk − 1 ≤ 0 (6b)

V (xk+1)− γV (xk) ≤ 0 (6c)

λu ≥ 0 (6d)

λq ≥ 0 (6e)

λTu (Huuk − 1) + λq(V (xk+1)− γV (xk)) = 0 (6f)

where V 1
k+1(uk) denotes the first derivative of V (xk+1)

with respect to uk.

Next, consider the optimizaton problem Pc:

min
c,uk,λu,λq

c (7a)

subject to (6a) - (6e) and

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk)) ≤ c (7b)
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Denote the solution to (7) by c∗, u∗k, λ
∗
u, λ
∗
q . Observe that

if c∗ = 0, u∗k is also the optimal solution to Pu. Clearly,
c∗ < 0 is not possible. The constraints of Problem Pc
includes the constraints of Problem Pu, and hence a fea-
sible solution to Pc is also a feasible solution to Pu with
u∗k (obviously fulfilling the constraints of problem Pc)
being a suboptimal solution to Pu.

Define by J(u∗k(c)) = 1
2 (u∗k)THu∗k + xTk Fu

∗
k the value of

the objective function of Problem Pu evaluated with the
input u∗k from the solution to Problem Pc. Correspond-
ingly, let J(u∗k(0)) denote the (optimal) value function
for Problem Pu.

Lemma 3 Consider an optimal solution (c∗, u∗k, λ
∗
u, λ
∗
q)

to Pc, with c∗ > 0. Then u∗k is a suboptimal solution to
Pu, with J(u∗k(c))− J(u∗k(0)) < c.

Proof:
This proof follows the approach in [10]. For any feasible
uk

1

2
uTkHuk + xTk Fuk ≥

1

2
uTkHuk + xTk Fuk

+

[
λ∗u

λ∗q

]T [
Huuk − 1

V (xk+1)− γV (xk)

]
= M(uk)

(8)

Next, minimize both sides subject to constraints (6b)
and (6c). Thus

J(u∗k(0)) ≥ min
(6b),(6c)

M(uk) ≥ min
uk∈<nu

M(uk) (9)

The functionM(uk) can be recognized as the Lagrangian
function or Pu, with fixed λu = λ∗u and λq = λ∗q . The
unconstrained minimization of M(uk) yields (6a), again
with λu = λ∗u and λq = λ∗q . One therefore finds that
the optimal value for the unconstrained minimization of
M(uk) yields uk = u∗k. Thus,

J(u∗k(0)) ≥M(u∗k)

Multiply the inequality above with −1 and add J(u∗k(c))
to both sides to obtain

J(u∗k(c))− J(u∗k(0)) ≤ c∗ (10)

2

3.2 Problem reformulation

In the following, the approximate solution to the op-
timization problem Pu is sought as a function of the
present state vector xk. However, for uk expressed as a
polynomial function of xk, V (xk+1) will have a higher or-
der dependence on the polynomial coefficients of uk(xk),

which will cause problems in the resulting controller de-
sign formulation. To circumvent this problem, attention
is refocused on the equivalent formulation (2), the KKT
conditions of which are

Ruk −BTλe +HT
u λu = 0 (11a)

Qxk+1 + λe + λq∇V (xk+1) = 0 (11b)

xk+1 −Axk −Buk = 0 (11c)

Huuk − 1 ≤ 0 (11d)

V (xk+1)− γV (xk) ≤ 0 (11e)

λu ≥ 0 (11f)

λq ≥ 0 (11g)

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk)) = 0 (11h)

where the operator ∇ ∆
= d

dxk+1
(.). As before, the com-

plementarity constraints are relaxed, and solutions with
a commensurate relaxation are sought, in which the in-
put is expressed as a function of the present state xk.
However, as a novelty of the present approach, instead
of considering the model equations as a separate con-
straint, this will be added as an extra term in all other
constraints involving both xk and xk+1. This yields the
formulation

min c (12a)

subject to constraints (11d), (11f), (11g), and

Ruk−BTλe+HT
u λu+µT1 (xk+1−Axk−Buk) = 0 (12b)

Qxk+1 +λe+λq∇V (xk+1)+µT2 (xk+1−Axk−Buk) = 0
(12c)

V (xk+1)−γV (xk)+µT3 (xk+1−Axk−Buk) ≤ 0 (12d)

−λTu (Huuk − 1)− λq(V (xk+1)− γV (xk))

+ µT4 (xk+1 −Axk −Buk) ≤ c
(12e)

The multipliers µ1, µ2, µ3 and µ4 as well as λe are poly-
nomial functions of xk and xk+1 with no positivity con-
straint. The multipliers λq and λu are also polynomials
in xk and xk+1, but have the positivity constraints as ex-
plicitly stated above. We retain from the control frame-
work that it is important to evaluate the input based
on information available online, and hence uk can only
be designed as a function of xk. The degrees of freedom
in this optimization are the polynomial coefficients of
the multipliers, the coefficients of the input considered
as a polynomial feedback function, and finally the co-
efficients of the polynomial Lyapunov function V (xk).
This reformulation can be interpreted as lifting the orig-
inal problem formulation to a higher dimensional space
with both xk and xk+1 as independent variables, while
the terms involving the µi ensure that the equations in
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which they are inserted hold on the manifold of system
trajectories (where the term inside the parentheses is
identically zero). The system equations (1) are fulfilled
by the physics of the system - and thus need not be en-
forced by the control. In contrast, the controller design
has to ensure that equalities (11a) and (11b) are fulfilled
along the trajectories of the system, in order to ensure
an approximately optimal control.

The controller design attempts to find a feasible approx-
imately optimal solution to (2) for the set

S = {x|V (x) ≤ 1}

The design procedure is initialized with S = Ω and
V (x) = xTP1x, and thereafter the set S is iteratively
enlarged while allowing for higher order V (x). The op-
timal controller inside Ωuc is already known to be Kuc.
Note that Ωuc ⊆ S. The controller design can therefore
be divided in two parts, one is the unconstrained con-
troller for Ωuc and the other controller is designed for a
region inside S but outside the ellipsoid Ωuc. This region
can be defined by the set

SC = {xk|p(xk) > 0} (13a)

where

p(xk) = −(1− V (xk))(1− xTk P0xk) (13b)

Using the S-procedure, the constraints defined above can
be enforced in the region where p(xk) is positive. In ad-
dition, it is natural to allow for a larger relaxation of
the complementarity constraints (and thus larger abso-
lute distance to optimum) when the state is far from the
origin. Therefore, the complementarity constraints are
relaxed by a factor cxTk xk instead of relaxing only by c.
This yields the optimization formulation

min c (14a)

Ruk−BTλe+HT
u λu+µT1 (xk+1−Axk−Buk) = 0 (14b)

Qxk+1 +λe+λq∇V (xk+1)+µT2 (xk+1−Axk−Buk) = 0
(14c)

Huuk − 1 + s1(xk)p(xk) ≤ 0 (14d)

V (xk+1)− γV (xk)+µT3 (xk+1 −Axk −Buk)

+ s2(xk, xk+1)p(xk) ≤ 0
(14e)

λu − s3(xk)p(xk) ≥ 0 (14f)

λq − s4(xk)p(xk) ≥ 0 (14g)

− λTu (Huuk − 1)− λq(V (xk+1)− γV (xk))+

µT4 (xk+1 −Axk −Buk) + s5(xk, xk+1)p(xk) ≤ cxTk xk
(14h)

Here s1(xk), s2(xk, xk+1),s3(xk), s4(xk) and s5(xk, xk+1)
are SOS polynomials.

It was explained above that the set S is increased itera-
tively. Note that Sj−1 ⊆ Sj provided:

(1− Vj(xk))− s6(xk)(1− Vj−1(xk)) ≥ 0 (15)

It is not yet guaranteed that the set S fulfills the state
constraints. The state constraints are given byHxxk ≤ 1
and thus may be regarded as the intersection of the nc
unbounded sets Cr = {xk|Hx,rxk ≤ 1}, where Hx,r is
the r′th row of Hx. Hence the state constraints become:

(1−Hx,rxk)−σr(xk)(1−Vj(xk)) ≥ 0, r = 1, . . . px (16)

where s6(xk) and σr(xk) are SOS polynomials. There-
fore, an approximate solution to the optimization prob-
lem described in (2) can be found by solving

min c (17a)

subject to

Ruk−BTλe+HT
u λu+µT1 (xk+1−Axk−Buk) = 0 (17b)

Qxk+1 +λe+λq∇V (xk+1)+µT2 (xk+1−Axk−Buk) = 0
(17c)

Huuk − 1 + s1(xk)p(xk) ≤ 0 (17d)

V (xk+1)− γV (xk)+µT3 (xk+1 −Axk −Buk)

+ s2(xk, xk+1)p(xk) ≤ 0
(17e)

λu − s3(xk)p(xk) ≥ 0 (17f)

λq − s4(xk)p(xk) ≥ 0 (17g)

− λTu (Huuk − 1)− λq(V (xk+1)− γV (xk))+

µT4 (xk+1 −Axk −Buk) + s5(xk, xk+1)p(xk) ≤ cxTk xk
(17h)

(1− Vj(xk))− s6(xk)(1− Vj−1(xk)) ≥ 0 (17i)

(1−Hx,rxk)− σr(xk)(1− Vj(xk)) ≥ 0, r = 1, . . . nc
(17j)

3.3 Solving the Sums-of-Squares problem

The optimization problem described in (17) can be
solved by using sum-of-squares (SOS) programming.
The SOS method has received a lot of attention since
the PhD thesis of Parrilo [12]. The SOS technique gen-
eralizes the known algorithmic tool in Linear Matrix
Inequalities (LMIs) for which there exist many efficient
solvers. The SOS method employs the similar techniques
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as LMI problems, but all problems are formulated in
terms of the polynomials or polynomial matrices [11].

In the problem described in (17), all constraints are of
SOS type except the constraints (17b) and (17c), which
gives linear constraints on the parameters of the poly-
nomials uk(xk), λe(xk, xk+1), λq(xk, xk+1) and λu(xk).
The polynomials s1,s2,s3,s4,s5, s6 and σr are all SOS
polynomials in xk, as is also V (xk). It can be noticed
that the problem is bilinear in the coefficients of si, σr
and V (xk). It is also bilinear with respect to coefficients
of λu and uk. Instead of attempting to solve the bilin-
ear problem formulation directly, this paper instead uses
the common approach of iteratively solving linear sub-
problems:

• First λu, λq, λe, si and σr are optimized with given
V (xk) and uk.
• Then V (xk) and uk are optimized, with λu, λq, si and
σr from the step above.

The problem (17) makes sure that the set Sj−1 ⊆ Sj but
it does not guarantee that Sj−1 ⊂ Sj and it may result in
Sj−1 = Sj for any number of iterations. To enforce that
the set Sj is larger than the set Sj−1, we select the points
outside Sj−1 and ensure that they are included in Sj ,
which results in a larger set Sj . After a certain number
of iterations we may not be able to find a set Sj greater
than Sj−1. Increasing the degree of V (xk) and/or u(xk),
one may then be attempted in order to increase the size
of Sj further.

3.4 Algorithm

This section provides a comprehensive procedure to ob-
tain a controlled contractive set. We start with the lin-
ear system and obtain the largest ellipsoidal contractive
set Ω and the largest unconstrained ellipsoidal contrac-
tive Ωuc set for that system as discussed in section 2.
These sets always exist in the linear system framework.
We want to find a contractive set S which is larger than
Ω. Of interest is only the part of this contractive set
where the function p(xk) is positive. This controller will
ensure that all the system trajectories contract towards
the origin at least by factor γ. Once the trajectories are
inside Ωuc, the controller Kuc will take over (represent-
ing in fact a switched control with a state-based switch-
ing rule).

We can choose the degree xdeg of V (xk) (which also de-
fines the set S) and the degree udeg of the control law uk
as per system requirements. Select num number of uni-
formly distributed points on the boundary of the ellip-
soid Ω and check which point undergoes most contrac-
tion. In this way we select a point where the contraction
constraint is farthest from being active. The idea is to
push this point outwards and ensure that S contains the
new scaled point, in this way S will be larger than Ω. As

discussed in the section 3.3, obtaining S is an iterative
procedure. In the first iteration, the problem formulated
in (17) is solved by keeping S = Ω and uk as the corre-
sponding control law for Ω. By solving the problem, the
optimized values for λu, λq, λe, µ, si, and σr can be ob-
tained. These are now kept fixed and(17) can be updated
by solving for V (xk) and uk. An additional constraint is
added to (17), which if a valid solution is found ensures
that the point outside Ω are included in the set S. Now
we can take the new set S as our starting set and repeat
the whole procedure to obtain even larger set. This pro-
cess should continue until the contractive set cannot be
enlarged any further. In that case the iteration should
stop, or either xdeg or udeg (or both) should be increased.

Algorithm 1 Algorithm to obtain a larger contractive
set

Input: A contractive ellipsoid Ω with control law uk.
Maximum allowed degree (xdeg) for the Lyapunov
function, maximum allowed degree (udeg) for the
control law, and maximum acceptable measure of
sub-optimality (cmax).

Output: A large contractive set of degree ≤ xdeg with
control law of degree ≤ udeg.

1: Set j = 0, Sj = Ω such that Sj = {xk|V (xk) ≤ 1}
and set solution = feasible.
LOOP Process

2: while solution is feasible do
3: Set j = j + 1
4: Find boundary points of the set Sj−1 by solving

for V (xk) == 1 along rays in directions defined
by vectors from the origin to points uniformly dis-
tributed on the nx-dimensional unit sphere.

5: Check which point contracts most by applying
control law uk. Select that point point.

6: Solve the SOS problem (17) by keeping V (xk) and
uk fixed. Optimize for λu, λq, λe, si and σr.

7: Set a small positive number increment, which will
be used to specify a point outside Sj−1.

8: Find a point outside Sj−1 by adding increment×
point to point i.e. pointnew = point+increment×
point.

9: Keep λu, λq, si and σr fixed, optimize (17) us-
ing V (xk) and uk, while ensuring that the point
pointnew is included in Sj .

10: if solution is feasible & c ≤ cmax then
11: Update V (xk), uk, λu, λq and si.
12: end if
13: end while

Let the controller obtained from algorithm 1 be denoted
by uk = cu(xk), then the explicit controller for the over-
all problem becomes:

uk =

{
Kucxk, if xk ∈ Ωuc
cu(xk), if xk ∈ SC

(18)
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4 Examples

The application of the method described in section 3 is
illustrated in this section. The SOS problems are formu-
lated and solved using YALMIP [6].

4.1 Example 1

Consider a linear system whose state representation is
given as:

xk+1 =

[
1 0.2

0 1

]
xk +

[
0.22

0.2

]
uk (19)

The input constraints are given as −2 ≤ uk ≤ 2 and
each element j of the state vector should fulfill the con-
straints −5 ≤ xk,j ≤ 5. The specified contraction factor
is 0.90. The contractive sets obtained are shown in Fig-
ure 1. The set in front is obtained by the Dorea-Hennet
procedure [3], it is comprised of 250 hyperplanes. The
black set represents the largest ellipsoid obtained with
the linear feedback, light and dark gray sets behind black
set are obtained using the controller design described in
section 3. The light gray set is a level set of the Lya-
punov function of degree 8 and the dark gray one is a
level set of the Lyapunov function of degree 10. Both of
these sets use a linear structure for the control law.

Fig. 1. Contractive Sets of variable degree on V(x) with linear
input for Example 1

The state trajectories for the dark gray set are shown in
figure 2. The method described in section 3 is used to
design the controller for the region (dark gray), which
is outside the ellipsoidal (light gray) set, whereas inside
the ellipsoidal set the unconstrained controller Kuc is
used. The ellipsoidal set is the set corresponding to the
unconstrained controller, and the unconstrained (linear)
control law is applied once state is inside the ellipsoidal
set. The value of c, the measuring distance from the
optimum comes out to be 4.54 · 10−12.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x1

-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 2. State Trajectories for Example 1

In Figure 3, contractive sets with variable input degree
are shown. All sets use a Lyapunov function of degree 8.
The white set is found with a controller of degree 3, while
the dark and light gray sets correspond to the controllers
of degree 2 and 1 respectively.

Fig. 3. Contractive Sets with varaible input degree for Ex-
ample 1

4.2 Example 2

Consider the following system with oscillatory modes
(corresponding to a complex conjugate pair of eigenval-
ues).

xk+1 =

[
0.3 −0.2

0.1 0.1

]
xk +

[
0.2 0.4

0.4 0.5

]
uk (20)

The input and the state constraints are given as −2 ≤
uk,i ≤ 2, i = 1, 2 and −5 ≤ xk,j ≤ 5, j = 1, 2 respec-

7



Table 1
Contractive sets method versus volume

Method Degree or Hyperplanes Volume

Dorea-Hennet 8 75.7677

Ellipsoidal 2 78.5398

VdLF 8 87.2972

tively. The contraction factor is selected to be 0.20.

Fig. 4. Polyhedral, Ellipsoidal and pre-specified degree Con-
tractive Sets for Example 2

The set shown in front of the Figure 4 is the largest
polyhedral contractive set fulfilling these constraints, ob-
tained by the method described in [3]. The dark gray set
is the largest ellipsoid and the light gray set at the back
is the contractive set obtained by the method described
in this paper. The control law for the light gray set is
linear and is given as:

uk =

[
−0.0870 −0.0592

−0.0988 0.0653

]
xk

Table 1 compares the results of the contractive sets
obtained by different methods. Dorea-Hennet is the
method described in [3] (the set in front in the figure
(4)), ellipsoidal is the method which gives the largest
ellipsoid fulfilling the constraints (the dark gray set in
the figure (4))and VdLF is a variable degree Lyapunov
function method developed in this paper. The value of
c is 1.22 · 10−10.

4.3 Example 3

Consider the following linear system,

xk+1 =


1 0.98 0.1

0 1 0.98

0 0 1

xk +


0.8

0.3

0.2

uk (21)

where −5 ≤ xk,j ≤ 5, j = 1, 2, 3 and −2 ≤ uk ≤ 2. The
contraction factor is selected to be 0.9. The polyhedral
contractive set obtained by the method described in [3] is
shown in the figure 5 and its volume is 11.9. The largest
ellipsoidal set Ω has volume 71.13, and is shown in red
in Figure 5. The volume of the set S obtained by the
method proposed in the paper, comes out to be 124.36
(green set in figure 5). The set S is the level set of a
Lyapunov function of degree 6 and it is obtained using
a linear control law.

Fig. 5. Controlled contractive sets for example 3.

5 Discussion and Conclusion

This paper presents a method to obtain a large controlled
contractive set of specified degree with the correspond-
ing control law. It was shown that the contractive set can
be enlarged by increasing the degree of the contractive
set or the degree of the control law. The examples show a
significant increase in the size of the contractive set, and
hence a corresponding increase in the size of the region
where the controller is defined. The resulting controllers
are explicit and characterized by low complexity, with
a modest memory footprint for the online implementa-
tion, and require only very simple computer code.

Currently, the size of SOS programming problems that
can be handled is limited, and this will limit both the
number of states and the polynomial order that can be
handled by the method described in this paper. How-
ever, research aiming at increasing the size of SOS prob-
lems that can be handled is very active and is making
progress, as was documented at the 2017 CDC confer-
ence (see, e.g., [14] and [4]).
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The results in this paper handle nominal linear dynam-
ics only. Conceptually, they are straight forward to gen-
eralize to linear systems with polytopic uncertainty, by
replicating the design criteria for each extreme point in
the polytopic uncertainty set, while keeping the Lya-
punov function and the feedback control identical for
all extreme dynamics. Simple interpolation can then be
used to show that the design criteria also hold for in-
ternal points in the uncertainty polytope. However, this
will quickly lead to very large SOS problems.
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