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Abstract

A novel distributed approach to treat the wind farm (WF) power maximiza-
tion problem accounting for the wake interaction among the wind turbines
(WTs) is presented. Power constraints are also considered within the opti-
mization problem. These are either the WTs nominal power or a maximum
allowed power injection, typically imposed by the grid operator. The ap-
proach is model-based. Coupled with a distributed architecture it allows fast
convergence to a solution, which makes it exploitable for real-time opera-
tions. The WF optimization problem is solved in a cooperative way among
the WTs by introducing a new distributed particle swarm optimization algo-
rithm, based on cooperative co-evolution techniques. The algorithm is first
analyzed for the unconstrained case, where we show how the WF problem
can be distributed by exploiting the knowledge of the aerodynamic couplings
among the WTs. The algorithm is extended to the constrained case em-
ploying Deb’s rule. Simulations are carried out on different WFs and wind
conditions, showing good power gains and fast convergence of the algorithm.
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swarm optimization

1. Introduction

1.1. Context and Motivation

In recent years, we have witnessed a relevant research effort in the field of
wind energy production due to the high increase of installed capacity concern-
ing wind farms. Developments in the field of control and optimization, along
with the mature technology level of variable-speed variable-pitch variable-
yaw wind turbines, have thus pushed the WF control targets further ahead
towards a better exploitation of the wind source. In particular, the great
adaptability of modern WTs to a wide range of wind conditions for the max-
imum power capture as well as a better understanding of the aerodynamic
phenomena involved in the WFs, suggest to take in consideration the aero-
dynamic interaction among the WTs, when the power maximization of large
wind farms is concerned. Indeed, when extracting kinetic energy from the
wind, a WT causes a reduction of the wind speed in the downstream wake.
As a result a turbine, standing in the wake of an upstream one, experiences
a reduction of available wind power. Intuitively as the number of wind tur-
bines of a wind farm increases, such phenomenon becomes more important,
so that considering it when optimizing the wind production proves poten-
tial gain with respect to classic individual turbine maximum power point
tracking (MPPT) mode. As a matter of fact, in such situation, a greedy con-
trol, according to which each WT tracks its own maximum available power,
no longer guarantees the maximization of the power extraction at the WF
level. This mainly justifies a growing interest in cooperative methods to con-
trol wind turbines belonging to large wind farms, e.g. [1]. These rely on a
WF controller in order to manage the cooperative power production sharing
among the WTs. Such controller has to deal with a large quantity of infor-
mation as it has to process and communicate a growing number of variables
with the increasing number of WT units, while respecting more and more
real-time operation constraints. As a result, the depicted situation suggests
the employment of a distributed control architecture among the WTs, rather
than its more classic centralized counterpart. Indeed, a large-size WF can be
naturally defined as a multi-agent system (MAS), where its WTs represent
the system agents. Even though treating the WF control problem in the MAS
framework may lead to suboptimal solutions with respect to the centralized
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approaches, these latter may be unfeasible if we aim at real-time operations.
As a matter of fact, distributed systems allow the important feature of reduc-
ing the computational and communication burden. Moreover, they typically
lead to a system that is scalable, modular, and resilient, which is among the
reasons why the distributed approaches are rapidly gaining popularity within
the more general framework of distributed energy generation, [2, 3].

1.2. Related Works

Modeling the aerodynamic coupling among the WTs of a WF, i.e. the
wake interaction, also known as wake effect, with high fidelity degree is not
a trivial task. This involves numerical solutions to systems of partial differ-
ential equations. In other words, in principle, computational fluid dynamics
(CFD) tools should be employed. See for instance [4] for large eddy simula-
tion (LES) tools for WF applications. However, for the sake of engineering
applications, typically the use of simplified static models for the prediction
of WT wakes is preferred as it enables reduced computational cost, [5]. This
is also the case for off-line WF applications, such as the layout optimization
problem. In this regard, one can cite for instance the works of [6, 7, 8, 9].
If the use of CFD tools is impractical for off-line applications, this reveals
to be also true for real-time WF operations, where wake effect has to be
recursively recalculated, [10, 11]. Thus LES is either employed for model
parameters tuning in a grey-box approach as in [1, 6, 11], or for control val-
idation as in [12, 13, 14].
When the WF layout is given, still optimal control of a WF can be seek
via optimization and control methods. The research literature is vast in this
regard, and it can be roughly divided in two main groups, namely central-
ized model-based and distributed model-free approaches. The former typically
make use of the mentioned simplified wake models as they are suitable for
real-time control algorithms, [14]. These in turns rely on a WF problem that
is generally formulated as an optimization one. The concerning literature
works differ according to the used model, optimization algorithm, and WT
variables of control. These latter are typically the yaw angle, and either the
axial induction factor, or a combination of pitch angle and tip speed ratio.
Authors of [15] also propose methods based on individual pitch control to
induce both yaw and tilt moment to redirect turbine wakes. An exception
is presented by the works of [16] and [5], where the authors tackle the WF
power maximization problem by simultaneously acting on the WT relative
positions and on their control variables. Among the gradient-based tech-
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niques used to solve the WF problem, one can cite the works of [1, 5, 17, 18].
Authors of [1] capitalize on sequential convex programming techniques, with
yaw influence consideration, enabled by the choice of a continuous and dif-
ferentiable wake model. In [18], authors aim at speeding up the optimization
problem convergence, by using a sequential optimization method. In partic-
ular, with the knowledge of the upstream free wind direction, they exploit
the problem structure by letting only the parameters of a WT to be active
at a time. A similar approach is proposed by [5] where the employed dy-
namic programming technique reflects the structure of the problem. Since
the WF optimization problem happens to be nonconvex, the aforementioned
optimization approaches suffer from convergence to local optima, and their
solution is affected by the initial guess. This is why global optimization meth-
ods have been proposed for the sake of maximizing the WF power produc-
tion. In particular, centralized metaheuristic algorithms have been used in
[19], where the well-known technique of particle swarm optimization (PSO)
is employed, and in [10, 13, 16], where the authors capitalize on the genetic
algorithm (GA).
It is worth mentioning that the addressed optimization problem in the afore-
mentioned works is usually concerned with the unconstrained WF power
maximization one. In other words, neither the system physical constraints
such as the WTs nominal power, and the one imposed by the grid opera-
tor, are directly considered in the problem formulation. Thus, the provided
solutions are confined to the case in which the total available WF power is
lower than the maximum allowed one. Alternatively, one can a posteriori
constrain the solution of the unconstrained problem. However, this generally
leads to a suboptimal solution. As it will be explained in the following sec-
tions, adding the mentioned constraints to the optimization problem brings
it to a higher level of complexity, because they generally define a noncon-
vex feasible set. Exceptions can be found for instance in the metaheuristic
approaches of [10, 19], where the authors consider constraints within the op-
timization problem formulation. Unfortunately it is not mentioned how these
are managed in the employed algorithms, which is known to be a nontrivial
problem in metaheuristic optimization.
One of the main shortcomings of the model-based approach is the need for
simplified assumptions in the description of the system physics, which can
lead to discrepancies between model and actual aerodynamic phenomena.
This fact paved the way to model-free approaches. Moreover, due to their
intrinsic algorithm logic, they are usually well-suited for distributed imple-
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mentations, which can bring the important features listed in Subsection 1.1.
One can cite [20, 21] for methods based on gradient estimation, [22] as far as
game-theoretic approaches are concerned, and [12] for a Bayesian approach.
Similarly to the mentioned model-based methods of [5, 18], authors of [14]
propose a model-free nested extremum seeking technique to exploit the WF
problem structure. The main drawback of the mentioned data-driven dis-
tributed approaches mainly regards the speed of convergence. This is due to
the fact that the WF control parameters have to be first tested on the real
plant in order to evaluate their real effect.

1.3. Contribution of the Paper

In this paper we tackle the WF power maximization from a MAS per-
spective. In particular, our main contribution is the proposal of a model-
based distributed approach to control a wind farm. The aim is to blend the
advantages of both the centralized model-based and distributed model-free
methods mentioned in Subsection 1.2. Among these, one of our scopes is
to reach fast convergence for real-time operations that a simpler centralized
model-based architecture may fail to achieve in the case of large-size WFs,
[10].
The second contribution regards the introduction of a novel distributed PSO
(DPSO) algorithm to let the WTs cooperate via only local interactions. The
employment of metaheuristic algorithms in the framework of WF control
under wake effect is largely justified by their proven good performance in
the literature for both layout optimization, as in [9, 23, 8], and in control
optimization applications, as in [10, 13, 16, 19]. As it will be treated more
in details in the sequel, the proposal of a new DPSO algorithm is necessary
as, to the authors’ knowledge, there does not exist a ready-to-use distributed
PSO solution capable of handling a multi-agent system whose agents share
a common optimization variable.
Eventually the presented algorithm allows to take system constraints into
account within the problem formulation. Specifically, these are handle by
employing Deb’s rule, [24].

The remainder of the paper is organized as follows. Firstly, the wake
model is presented in Section 2. The WF optimization problem, together
with the considered reduced formulation, is stated in Section 3. In Section 4
we recall and discuss some basic concepts concerning cooperative co-evolution
techniques on which DPSO is based. DPSO algorithm for the WF problem
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is detailed in Section 5. We carry out simulations to test the algorithm
performance on different WFs and wind conditions in Section 6. The paper
end with conclusions and further perspectives in Section 7.

2. Wind Farm Power Function and Wake Model

Even though in the literature there exist many simplified analytic wake
model representations, many of them are variants of the pioneer work of [25],
who first proposed the single wake model, i.e. describing the wake interaction
between two WTs, and [26], who introduced the wake model accounting for
multiple WTs interactions. This, also known as Park model, describes a
piece-wise linear wind speed profile distribution within a WF, and it is based
on the assumption that the wake behind the WTs expands linearly, according
to a wake constant kw, in the downstream direction, and that the wind inside
the wake is constant at equal distance from the according WT. This provides
a top-hat shape to the wake velocity deficit.
In this paper we make use of a wake model based on the work of [1, 11]. In
particular, the authors of [11] propose a parametric model to be tuned on
WF real data or via LES. Based on it, authors of [1] provide a continuous
and differentiable analytic model, thanks to the choice of a Gaussian shape
for the crosswind direction wind velocity profile, instead of the top-hat one
of the classic Park model. Notice that a similar approach has been used e.g.
in [13] for a Gaussian shape, and in [27] for a cosine one. Moreover, both
[1, 11] allow to take into account the WT yaw angle influence in the wake
direction.
The aim of this section is to provide the main modeling steps required to
build the WF power function. The reader may refer to [1, 11] for further
details.

2.1. Single Wake Model

The power P extracted by aWT from the upstream wind can be expressed
as

P =
1

2
̺πR2v34α(cos(τ1o)− α)2 (1)

where ̺ is the air density, R the rotor plane radius, v the upstream wind
speed, α is the WT axial induction factor and defined as the ratio of the
difference between the wind speed value in the axial direction and the wind
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Figure 1: Wind flow and wind speed at rotor disc, vr = v(cos o− α), [1].

speed behind the rotor plane vr, and the upstream value, o is the WT yaw off-
set with respect to the upstream wind direction, as shown in Fig. 1. τ1 ∈ R is
the first introduced model parameter. The term Cp(α, o) , 4α(cos(τ1o)−α)

2

is also known as the WT power coefficient, and it has a maximum theoretical
value equal to 16

27
, corresponding to a zero yaw offset and α = 1

3
. In such case

the WT is operated in MPPT mode.
Park wake model describes the wind speed value in a downstream wake, by
introducing a deficit factor δv(d, r, α), i.e. function of the distance d behind
the wake, the radial wake distance r, and the axial induction factor α of the
WT causing the wake. Such wind speed value is computed according to

v(d, r, α) = v(1− δv(d, r, α))

In such model, it is assumed that the radius of the wake linearly increases
with the downstream distance, according to R(d) = R+κwd, where the wake
expansion rate κw is a constant depending on the surface roughness of the WF
site. Deficit δv is then assumed to be null outside the wake, constant inside
on equal distance values d, and proportional to the ratio between the area
of the rotor plane, πR2, and the wake plane area at d, πR2(d), having value

2α
(

R
R(d)

)2

. This is where Park model introduces a discontinuity. However, it

has been observed that for distance values d > 10R, the cross sectional wind
speed profile resembles a Gaussian function [1]. Thus, δv can be modeled as

δv(d, r, α, o) = 2α cos(τ2o)

(

R

R(d)

)2

e
−

( r

R(d)

)

2

(2)

where the exponential term defines the Gaussian shape, and where it has
been further introduced the factor accounting for the yaw effect. τ2 ∈ R

is the second model parameter. The aforementioned considerations on the
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Figure 2: Gaussian wake expansion model, [1].

wake expansion, and shape behind the WT are depicted in Fig. 2. The
wind speed reduction experienced by a downstream WT i, caused by an
upstream WT j, intuitively depends on the wake position with respect to
the downstream WT rotor plane. This can be modeled by introducing two
parameters, namely dij, and rij. The former represents the axial distance
according to the free stream wind direction θW , while the latter represents
the radial distance of the wake centerline from WT i rotor plane center.
Let us consider an absolute reference frame (x, y). We can thus define the
position of each turbine i via its coordinates (xi, yi). The wind direction θW

in front of the considered upstream WT j can be defined with respect to the
mentioned reference frame. Then, we can consider a rotated reference (x′, y′)
by an angle equal to θW , given by the coordinate transformation

{

y′ = x sin θW + y cos θW

x′ = x cos θW − y sin θW
(3)

Both the absolute and rotated reference frame are shown in Fig. 3. On this
basis, we can compute the distance dij as dij = |y′i − y′j|, while rij is given by
three terms as follows

rij = rlij + rrij + roij

and where rlij = |x′i − x′j| represents the radial wake distance due to the
relative locations of WT i, and j with respect to θW , i.e. in the rotated
coordinates. The second term of rij, i.e. rrij, allows to take into account
the wake deviation caused by the rotating blades. In [11], it is shown to
be linearly dependent on dij via a tunable parameter τ3 ∈ R

+. Moreover,
without loss of generality, we consider a positive deflection towards the right
of the wake centerline, i.e.

rrij = τ3dijsign(x
′
i − x′j)

8
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x

y

xi

yi

y′

x′

j

v

θW

i

x′i

y′i

Figure 3: Absolute and rotated reference frame according to the free stream wind direction
θW .

where sign(x′i − x′j) = 1 if x′i − x′j ≥ 0, and −1 otherwise. The last term
in rij, r

o
ij, is due to the yaw offset angle of WT j, oj. The wake is deflected

by the yaw, then, influenced by the free stream, it deviates in its direction.
The result is a curved trajectory. Authors of [28] describe this curvature at
a generic downstream distance d via the angle of the centerline of the wake
ξ(d), which assumes the following expression [11]

ξ(d) =
ξinit(αj, oj)
(

1 +
τ4d

R

)2

where τ4 ∈ R
+ is left as an additional tunable parameter, and ξinit(αj, oj) ,

1

2
(cos oj)

2(sin oj)4αj(1−αj). Moreover, the yaw-induced lateral offset δγ(dij)

can be computed by solving the following integral via approximated Taylor
expansion

δγ(dij) =

dij
∫

0

tan(ξ(x))dx

A positive yaw offset oj increases the yaw-induced offset. However, this
latter can increase or decrease the total value of rij depending on the relative
locations of the wind turbines and the wind direction. According to the
above considerations, roij can be computed as

roij = |δγ(dij)|sign(x
′
i − x′j)

The three cumulative effects composing rij are shown in Fig. 4. We are now

9
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x

y

i

d

r

j

v

θW

roijrrij
rlij

oj

ξ

Figure 4: Radial distance of WT j wake centerline from WT i rotor plane, due to three
effects: rlij , r

r
ij , and r

o
ij , [1].

able to determine the wind speed deficit of a WT i caused by the single wake
of WT j. This is done by using wind deficit δv expression of (2), and dij,
rij, defined above. The wind speed value captured by WT i, vij, can be
computed at any generic point on its rotor disc by defining the local polar
coordinates (r′, θ′), (see [1] for details). This is given by

vij(r
′, θ′, αj, oj, v, θ

W ) = v(1− δv(dij, r, αj, oj))

where δv is computed in (dij, r, αj, oj), being r =
√

(rij − r′ cos θ′)2 + (r′ sin θ′)2.
Notice that dij, and r, on which δv depends, are function of (αj, oj), and θ

W ,
but not of v. For the purpose of simplification, the average wind speed v̄ij
on the rotor disc of the downstream WT i can be computed by applying the

10
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mean value theorem for integrals. This is given by

v̄ij(αj, oj, v, θ
W ) =

1

πR2

θ′=2π
∫

θ′=0

r′=R
∫

r′=0

vij(r
′, θ′, αj, oj, v, θ

W )r′dr′dθ′

From the above expression, the power extracted from the downstream WT
is

Pi =
1

2
̺πR2v̄3ij(αj, oj, v, θ

W )Cp(αi, oi) (4)

We are able to see how Pi is function of the according WT i operating
conditions via Cp, as well as function of the upstream WT j ones via the
wake model, defining v̄ij(αj, oj, v, θ

W ). An example of average wind deficit
δ̄v,ij , 1 − v̄ij

v
as a function of dij, and rij, caused by a WT j with oj = 0,

αj =
1
3
, is given in Fig. 5.

0
80

60 4

0.2

vi
j

2

d
ij
/R

40

r
ij
/R

0.4

020 -2
0 -4

Figure 5: Wind deficit as a function of dij and rij caused by WT j on WT i, when
oj = 0, αj =

1

3
.

2.2. Multiple Wake Model and WF Power Function

In a wind farm, a wind turbine i is likely to experience a wind speed deficit
caused by multiple wakes, i.e. from all the upstream WTs. In order to take
into account the wake interference among multiple WTs, the kinetic energy
conservation method proposed by [26] in Park model, is by far the most
employed one. In this model it is assumed that the kinetic energy deficit by
the mixed wake is equal to the sum of the kinetic energy deficits by individual
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wakes, [1]. Before providing the expression of the wind deficit in the multi-
wake case, it is useful to provide the following notation as it will be employed
in the algorithm discussion in Section 5. According to the wake model, each
WT i is physically coupled to any upstreamWT j, since the average captured
wind speed v̄ij, affecting turbine i power function via (4), is function of WT
j operating points, i.e. αj, and oj. We say that WT j is a physical neighbor
of WT i. Notice that the vice versa is not true. If we name V , {1, . . . , N}
the set of N WTs composing a WF, for each WT i we are thus able to define
an associated physical neighborhood as N p

i , {j ∈ V : y′i − y′j > 0}, i.e. if
WT j is an upstream turbine to i. We can also define the vector of variables
associated to the WTs in the neighborhood as αij , {αj : j ∈ N p

i }, and
oij , {oj : j ∈ N p

i }. Notice that N p
i (θ

W ), i.e. it is a function of the wind
farm free stream wind direction θW via (3). Thus, if θW is a function of
time, then N p

i is time-varying too. According to the mentioned method of
conservation of kinetic energy, we can thus describe the total average wind
speed deficit δ̄v,i experienced by WT i in a WF as

δ̄v,i =

√

∑

j∈N p
i

δ̄2v,ij (5)

If we now name v∞ the free stream wind speed blowing towards the wind
farm, we have that the average wind speed captured by WT i is

v̄i(αij,oij, v∞, θ
W ) = v∞(1− δ̄v,i(αij,oij, θ

W ))

As a result, its available power is

Pi(αi, oi,αij,oij, v∞, θ
W ) =

1

2
̺πR2v̄3i (αij,oij, v∞, θ

W )Cp(αi, oi) (6)

Eventually, the total wind farm available power Pwf , given the free stream
wind parameters (v∞, θ

W ), and the WTs operating conditions αi, oi, ∀i ∈ V ,
can be simply computed by summing the single power productions, yielding

Pwf ,

N
∑

i=1

Pi(αi, oi,αij,oij, v∞, θ
W ) (7)

Remark 1. According to the considered wake model, the wind deficit ex-
perienced by each turbine is function of the free stream wind direction θW ,
but not of its speed value v∞. This influences the power production, but it
intervenes as a factor in (7). This fact has important consequences in the
optimization problem formulation, as it will be discussed in the next sections.
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Remark 2. Wake model parameters kw, τ1, τ2, τ3, and τ4 can be tuned via
real-data identification as suggested by [11], or via CFD simulation. In this
work we make use of the parameter values provided in [1], where these are
calibrated using SOWFA, a CFD tool introduced by [4]. The analytic model
proves to match well with CFD simulation data for yaw offset angles in the
range of o = ±30◦.

3. Wind Farm Problem Formulation

3.1. Problem Statement

The main wind farm problem of interest is the one of maximizing the
WF power production. In the literature this usually takes the form of an
unconstrained optimization problem, which can be formulated as follows

min
(α,o),{(αi,oi),i∈V}

−Pwf (α,o, v∞, θ
W ) (8)

Some considerations need to be done concerning problem (8). First of all,
notice that according to Remark 1, it follows that its argument (α⋆,o⋆),
i.e. the optimal optimization variables, does not change if only the wind
speed value v∞ does. This is due to the fact that the cost function in (8)
has invariant minima with respect to v∞, as it appears as a factor in it.
The important practical implication is that, in this case, the optimization
needs to be performed only when the wind direction θW changes. In a real
world implementation though, the solution to (8) may not be feasible due to
system constraints. We identify two main constraint sources, which will be
considered in this work, namely

a) Physical constraints, i.e. WT nominal power Pn.

b) Grid constraints, expressed in the form of maximum allowed power injec-
tion in the grid, Pmax

wf .

The interest in considering power constraints in point b, also known as power
curtailment, comes from recent needs of letting a WF participate to grid
operations, (see e.g. [29]). Furthermore, authors of [30] show the economic
advantage of power curtailment as a possible alternative solution to grid
reinforcement for the integration of renewable energies.
From a practical point of view, the optimal solution to (8) can be applied to
the system only if, in the absence of a Pmax

wf constraint, the free stream wind
speed value v∞ is such that Pi(α

⋆,o⋆) ≤ Pn, ∀i ∈ V . Another approach that
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could be considered is to constrain the solution of (8) a posteriori. However,
in this case, being the optimization problem nonconvex, and because the
considered power constraints generally define a nonconvex feasible set, such
solution is likely to be suboptimal. For this reason, we rather consider such
constraints actively in the optimization problem, by modifying (8) as follows

min
(α,o)

−Pwf (α,o, v∞, θ
W )

subject to

Pi(α,o, v∞, θ
W ) ≤ Pn, ∀i ∈ V

Pwf (α,o, v∞, θ
W ) ≤ Pmax

wf

(9)

It is important to notice that, differently from (8), problem (9) has to be
solved each time that either v∞, or θW changes, as v∞ modifies the feasible
region via the problem constraints. In this case it appears even clearer the
importance of algorithm fast convergence to solve (9) with real-time perfor-
mance. However, for real implementations it seems reasonable to consider
an optimization step with respect to averaged values of wind speed and di-
rection signals, in order to grasp their main trends affecting the wind farm
power function, and to sufficiently filter out the turbulence components. For
this reason, for now on, we will refer to (v∞, θ

W ) as the filtered values of
the original wind speed and direction signals. For instance, from wind mea-
surements, this can be achieved via a moving average filter. Eventually we
consider the additional

Assumption 1. The couple (v∞, θ
W ) is uniform along the wind farm length.

3.2. Yaw Angle Presetting

As shown in the wake model of Section 2, the yaw angle influences the
wake shape trajectory, and for this reason it should be considered as an op-
timization variable, as done in the optimization problem formulation in (9).
However, since the yaw offset can be controlled according to dynamics which
are slow when compared to the axial induction factor ones, and being in-
terested in real-time control capabilities, in this work we make the choice to
preset the WTs yaw angle, and to leave the WTs axial induction factor as the
only WF optimization variable. For instance, the yaw values can be thought
as being set according to a higher optimization step which only takes into
account slow wind variations. In this paper, for the sake of the proposed
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algorithm analysis, we make the simple choice to set oi = 0, ∀i ∈ V , i.e.
the yaw angle γi of each WT is γi = θW . In this case the WTs are always
oriented such that their rotor plane is perpendicular to the wind direction.
This choice is generally suboptimal as the yaw angle has an active role in
providing the optimal solution when constraints are not active and in the
presence of the wake effect. In the light of the above considerations, the WF
optimization problem considered in the sequel reduces to

min
α

−Pwf (α, v∞, θ
W )

subject to

Pi(α, v∞, θ
W ) ≤ Pn, ∀i ∈ V

Pwf (α, v∞, θ
W ) ≤ Pmax

wf

(10)

where we removed the explicit dependence upon o as it is set equal to 0.

Remark 3. Since the yaw effect is considered in the wake model, the results
of Section 5 can still be applied if o is pre-assigned with a value which is
different from 0.

4. Preliminaries on PSO and Cooperative Co-evolution

Before providing the ad hoc distributed PSO algorithm to solve WF prob-
lem (10) we need to introduce some basic concepts concerning a particular
implementation of the classic PSO algorithm. This is based on a technique
known as cooperative co-evolution (CC) on which our distributed PSO ver-
sion is founded. The CC technique was first introduced in [31], while its first
application to centralized PSO can be found in [32].

4.1. CC-PSO Algorithm

Let us consider the following unconstrained optimization problem

min
x∈Rn

F (x) (11)

where F : Rn → R. In classic PSO, a set of Np particles, p = 1, . . . , Np,
is associated to problem (11), each of which represents a position xp in the
search space. During the run of the algorithm, these move according to a
prescribed law of evolution, and they update and store in memory their lat-
est personal best visited position bp in respect of the cost function F to be
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minimized. Moreover, they have access to the other particles personal best
and the according cost function value. On the basis of this knowledge then
each particle is able to elect the best particle among the swarm particle bests,
i.e. the global best g.
In cooperative co-evolution PSO (CC-PSO) the optimization problem is sim-
plified by dividing it in smaller sub-problems. The main idea, known also as
divide and conquer strategy, can be summarized in three important steps,
namely problem decomposition, subcomponent optimization, and cooperative
combination, [33]. In the first step, the n-dimensional problem is divided
in N sub-problems of lower dimension, i.e. the vector x is decomposed in
N subcomponents xi ∈ R

ni , i = 1, . . . , N , each of which represents a non-
overlapping subset of the dimension of the search space. A swarm of Np

particles is associated to each subcomponent. In order to evaluate each sub-
component, i.e. how each of its particles fits the cost function F , a context
vector has to be constructed, [32]. This is usually done by concatenating
each subcomponent particle with the global best particles of the other sub-
components swarms, [34]. This practice will be detailed in the algorithm
description.
In the original CC-PSO formulation, the swarms belonging to each subcom-
ponent are processed in sequential order, i.e. at any time step of the al-
gorithm, only one population is active. In this case we say that the swarm
update timing is sequential, [35]. This strategy guarantees the objective func-
tion F to be strictly nonincreasing in the best solutions found during the run
of the algorithm, [32]. Nonetheless, in view of distributing the optimization
among the agents, where the goal is to reduce the run time, we are interested
in a parallel update timing, i.e. each agent swarm is active at any algorithm
time step, without the need for waiting its own turn. In this work we focus
on this latter case, where each swarm is updated according to the following
classic PSO equations











si,p(k + 1) =ωsi,p(k) + φ1i,p(k)(gi(k)− xi,p(k))

+ φ2i,p(k)(bi,p(k)− xi,p(k))

xi,p(k + 1) = xi,p(k) + si,p(k + 1)

(12)

where k is the current algorithm step, xi,p, si,p, and bi,p are respectively
the position, the speed and the personal best position values associated to
the p-th particle of the i-th subcomponent, gi is the global best of the i-th
swarm, φ1i,p and φ2i,p are two aleatory variables with uniform distribution of
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probability in the respective intervals [0, c1], and [0, c2], where c1, c2 ∈ R
+,

and ω is the inertia factor. See for instance [36] for the tuning of these
parameters. The overall CC-PSO algorithm is described in Algorithm 1 for
the generic i-th swarm.

Algorithm 1 CC-PSO with parallel update timing
Output: global best: gi

Initialization :
1: randomly initialize xi,p, si,p, p = 1, . . . , Np

2: bi,p = xi,p, p = 1, . . . , Np

3: randomly initialize gi
LOOP Process

4: for k = 1 to max iter do

5: compose the context vectors associated to the particles xi,p: x
g
i,p ,

(g1, · · · , xi,p, . . . , gN ), p = 1, . . . , Np

6: compose the context vectors associated to the personal bests bi,p: b
g
i,p ,

(g1, · · · , bi,p, . . . , gN ), p = 1, . . . , Np

7: evaluate the particle context vectors in F : F x
i,p , F (xg

i,p), p = 1, . . . , Np

8: evaluate the personal best context vectors in F : F b
i,p , F (bgi,p), p = 1, . . . , Np

9: update personal bests for p = 1, . . . , Np

(

bnewi,p , F b,new
i,p

)

=







(

xi,p, F
x
i,p

)

if F x
i,p < F b

i,p
(

bi,p, F
b
i,p

)

otherwise

10: bi,p = bnewi,p ; F b
i,p = F b,new

i,p

11: update global bests gnewi = arg min
{bi,p}

{

F b
i,p

}

12: gi = gnewi

13: perform (12)
14: end for

15: return gi

Remark 4. Since at each iteration the global bests of each swarm are likely
to change, the cost function value associated to the personal best bi,p context
vector may provide a false comparison reference for the corresponding par-
ticle xi,p context vector evaluation because they may refer to different values
of global bests. This is why we propose a first algorithm modification by re-
quiring to evaluate the personal best at each algorithm step, by composing the
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context vectors associated to them too. This is performed by Steps 6, and 8
of Algorithm 1.

4.2. Motivating Example

It is well known that the key point affecting Algorithm 1 convergence
is the problem decomposition step. By recalling the definition of separable
function:

Definition 1. F (x1, · · · , xN) is separable if and only if

arg min
x1,...,xN

F (x1, . . . , xN) =
{

argmin
x1

F (x1, . . .), · · · , argmin
xN

F (. . . , xN)

}

then, in order to assure proper convergence of the algorithm, the cost
function F should be separable in the given decomposition. In particular
the given subcomponents affect the convergence properties as well as the
dynamic behavior of the algorithm because they define the so-called best-
response curves, [35]. These are defined as

bestResponseXi(x1, · · · , xi−1, xi+1, · · · , xN) ,

argmin
xi

F (· · · , xi, · · · ), i = 1, · · · , N
(13)

which clearly depend on the given problem decomposition. Motivated by the
following example, we provide a new dynamic behavior analysis as well as
the synthesis of a modified CC-PSO algorithm with parallel update timing,
which enhances the algorithm convergence when the problem decomposition
does not fit the problem separability.
Let us consider the cost function F (x1, x2) = (x1 − x2)

2 to be minimized,
where x1, x2 ∈ R. Note that F (x1, x2) is not separable. However let us
consider the decomposition given by the two components of the optimization
variable, x1, and x2. Using (13), as in [35], we analyze the deterministic
system associated to the CC-PSO algorithm, which, for this example, is
given by

{

x1(k + 1) = bestResponseX1(x2(k)) = x2(k)

x2(k + 1) = bestResponseX2(x1(k)) = x1(k)
(14)

Such system reproduces the parallel update timing of the CC-PSO algo-
rithm as if the swarms associated to the two components were able to find
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the global best at each time step. Even though F (x1, x2) is a simple convex
function, having its minima in Ωex , {(x1, x2) ∈ R

2 : x1 = x2}, system (14)
shows an oscillatory behavior, given by the fact of having its eigenvalues
in −1, and 1. Thus, it does not converge to Ωex for any initial condition
{(x1(0), x2(0)) ∈ R

2 : x1(0) 6= x2(0)}. This fact has an important implica-
tion on the dynamics of the CC-PSO algorithm. Although system (14) does
not exactly reproduce Algorithm 1 behavior, this is likely to have similar os-
cillatory dynamics as the number of particles of each swarm increases. Fig. 6a
shows the swarms global best trajectories during the run of CC-PSO algo-
rithm for such example, where we set Np = 100. Inspired by classic results

0 50 100
iteration (k)

0.3

0.4

0.5

0.6 g
1

g
2

(a) Global bests trajecto-
ries.

0 50 100
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0.06

0.07

0.08

0.09
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st

 fu
nc

tio
n

(b) Cost function F evalu-
ated in the global bests tra-
jectories.

Figure 6: CC-PSO with parallel update timing dynamic behavior.

in control theory, where typically an oscillatory system can be stabilized by
introducing additional damping, we modify system (14) equations, according
to



















x1(k + 1) = x1(k) + β (bestResponseX1(x2(k))− x1(k))

= x1(k) + β(x2(k)− x1(k))
x2(k + 1) = x2(k) + β(bestResponseX2(x1(k))− x2(k))

= x2(k) + β(x1(k)− x2(k))

(15)

Such system converges to Ωex for any initial condition, and β ∈]0, 1[. Indeed,
for the considered values of β, system (15) has one eigenvalue inside the
unit circle, and one eigenvalue in 1 with corresponding eigenvector equal
to 12 , [1 1]⊤. Thus, system (15) trajectories converge to the subspace
given by span(12), i.e. {(x1, x2) ∈ R

2 : x1 = x2}, which is exactly Ωex. This
motivates the CC-PSO algorithm modification shown in next subsection.
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Remark 5. As previously mentioned, the original CC-PSO is conceived for
a sequential update timing parameter. This guarantees F to be strictly non-
increasing in the best context vector trajectory, [32]. Such property is no
longer satisfied in the case of parallel update timing. For instance, Fig. 6b
shows the cost function of the aforementioned example evaluated in the best
context vector trajectory, i.e. the one show in Fig. 6a.

4.3. Damped CC-PSO Algorithm

The given example allows us to deduce an important heuristic. The main
idea is to add the damping factor β in Algorithm 1 in order to reproduce
a similar behavior to the one seen in the example of the deterministic sys-
tem (15). In particular, we propose to replace Step 11 of Algorithm 1 with

gnewi = gi + β

(

arg min
{bi,p}

{

F b
i,p

}

− gi

)

(16)

This has the effect of damping the update of the global bests, and possibly
reducing unwanted oscillations. When applied in the algorithm, it is difficult
to compute β using mathematical tools. Thus, it is left as an additional
parameter to be tuned by selecting a value in ]0, 1]. Generally, such value
should be chosen to reduce possible oscillations while letting proper conver-
gence of the algorithm, which could be unnecessarily worsened by excessive
damping. We name the modified algorithm as the damped CC-PSO with
parallel update timing. Let us now apply this algorithm to the example of
the previous subsection for different values of β. The results are shown in
Fig. 7. We remark how the damping reduces the oscillations seen in Fig. 6a.
Moreover, as expected, the convergence time increases as the damping in-
creases, i.e. as β → 0. Notice also that even though the introduction of a
damping factor does not in general guarantee the cost function to be strictly
non-increasing in the global best trajectories, it helps mitigating the effect
mentioned in Remark 5. This fact is shown for the above example in Fig. 8
for two different choices of β value.

5. Distributed Wind Farm Optimization

5.1. Unconstrained WF Distributed Optimization Problem

We first tackle the WF distributed optimization problem in its uncon-
strained formulation. In other words the following results are valid whenever
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Figure 7: Global bests trajectories for different values of damping factor β.
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Figure 8: Cost function during the run of damped CC-PSO. The introduction of a damping
factor helps giving a global decreasing pace to the cost function.

the free stream wind and Pmax
wf are such that the constraints in (10) are

not active. By recalling the definition of physical neighborhood and the as-
sociated variables introduced in Section 2, each WT i is endowed with a
private optimization variable, i.e. its own axial induction factor αi, and cost
function, i.e. −Pi(αi,αij), where we removed the explicit dependence upon
the free stream wind parameters (v∞, θ

W ) for ease of reading. The overall
optimization problem is

min
α

−Pwf (α) = min
{αi,i=1,...,N}

−
N
∑

i=1

Pi(αi,αij) (17)

Thus, the WTs have to cooperatively minimize a common cost function in
a distributed way, while sharing the common optimization variable α. No-
tice that (17) is not separable in the given problem physical decomposition
(α1, . . . , αN) as it does not match the separability condition of Definition 1.
If this was met then it would imply that each WT i could optimize its own
αi independently from the other WTs choice.
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To the authors’ knowledge, in the literature, there does not exist DPSO al-
gorithms readily applicable to the mentioned optimization problem. These
usually combine PSO, and consensus techniques. In [37] each agent has
knowledge of its own cost function that depends on only its own optimiza-
tion variable, i.e. they do not share a common variable. Coupling among
the agents is then given by a common objective function known by them
all. A modified consensus technique is employed to estimate the sum of local
cost functions at each step of PSO. Unfortunately such estimation may fail
to be sufficiently accurate to guarantee proper convergence of the algorithm
when the agents do share a common variable, [38]. Authors of [39] propose
a distributed primal-dual optimization method, where the primal variable
update, usually provided by sub-gradient methods, is replaced by the PSO
algorithm. As in [37], agents do not share common variables, and the only
coupling among them is given by the requirement of satisfying a common in-
equality constraint obtained by the sum of local private constraint functions.
Examples of DPSO in which the agents share a common optimization vari-
able can be found for instance in [40, 41]. However, they are both specific
to the problem they address, and they are not readily extendable to the WF
optimization problem.
In this section we aim at providing a DPSO algorithm for the WF opti-
mization problem which is founded on the previously introduced damped
CC-PSO, and it exploits the problem structure to distribute it among the
WTs.

Remark 6. It is important to stress that, in the literature, DPSO, and dis-
tributed evolutionary algorithms more in general, are often related to parallel
computation in order to speed up the convergence to a solution. In this case
the originally centralized optimization problem is split among several comput-
ing units. The available works are then mainly concerned with finding smart
ways to define a problem decomposition which can resemble the problem sep-
arability structure as much as possible. In other words, how the algorithm is
distributed among the agents is a choice, [42]. In the WF problem, each WT
i optimization variable αi acts as a subcomponent of problem (17) optimiza-
tion variable α. Reflecting the physics of the problem, such decomposition is
imposed, and it cannot be altered to perform particular CC algorithms.

5.2. Exploiting the Problem Structure
To distribute CC-PSO the idea is that each WT i only needs to evaluate

its contribution, i.e. its context vectors, in the WTs private cost functions
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in which its own private control variable appears. In other words, WT i has
to evaluate its context vectors in all Pj such that j : i ∈ N p

j . This is due to
the fact that for i = 1, . . . , N

arg min
{xg

i,p,p=1,...,Np}

{

−Pwf (x
g
i,p), p = 1, . . . , Np

}

=

arg min
{xg

i,pp=1,...,Np}







−
∑

{j:i∈N p
j }∪{i}

Pj(x
g
i,p), p = 1, . . . , Np







(18)

where we remind that xg
i,p = (g1, . . . , xi,p, . . . , gN) is the context vector asso-

ciated to the particle xi,p, defined in Step 5 of Algorithm 1. Clearly the same
conclusions hold true for the personal best context vectors. It is important
to stress that (18) is made possible thanks to the use of the context vec-
tor strategy. Moreover, notice that, being applied to the WF optimization
problem, xi,p represents a value of WT i axial induction factor αi. Relation-
ship (18) is precisely what lets a reduced computational burden since, for
i = 1, . . . , N , {j : i ∈ N p

j } ∪ {i} ⊆ V . Moreover, it is naturally defined
upon the physical relationships among the WTs. This can be formalized by
defining a graph Gp that keeps track of the wake couplings among the WTs.
Thus Gp , (V , Ep) where Ep ⊆ V ×V , the set of edges, is such that (i, j) ∈ Ep
if WT i ∈ N p

j , i.e. if WT i is an upstream turbine with respect to WT j.
Edge (i, j) is graphically indicated as an arrow i→ j. Gp generally defines a
digraph. Since every WT power function is only known locally, each WT i
that has to evaluate its context vectors in Pj, j 6= i, it firstly sends them to
WT j, which then sends Pj valued in these context vectors back to WT i.
Thus the required communication graph can be defined via the following

Assumption 2. It exists a communication graph Gc = (V , Ec), where Ec ⊆
V × V is such that if (i, j) ∈ Ep, then both (i, j) and (j, i) ∈ Ec.

Gc defines an undirected graph, whose connections depend on the WTs
physical neighborhoods. An example of Gp and Gc is shown in Fig. 9.

5.3. Role of Local Bests

Instead of letting each particle compare its personal best with the ones of
all the otherNp−1 particles for the global best computation, usually a smaller
subset is considered. This practice is well-known to reduce the possibility of
premature convergence, [43]. In particular, each particle xi,p has access to the
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P3(α1, α2, α3), WT 3

P2(α1, α2), WT 2
WT 1, P1(α1)

(v∞, θ
W )

Figure 9: Physical graph Gp (dash line), and communication graph Gc (solid line). WT 1
evaluates its context vectors in −P1 − P2 − P3, WT 2 in −P2 − P3, and WT 3 in −P3.

personal bests of the particles belonging to a defined subset Si,p. Thus, xi,p
has its own knowledge of global best, which is local because it is restricted
to the mentioned subset. This is why in this case the global best is called
local best, and we indicate it with li,p. PSO equations (12), and the damped
global best update (16) are then modified by simply replacing gi with li,p. We
additionally require the subset Si,p to be the same for each particle among
the agents having same p index. Thus we can drop its i index: Si,p = Sp,
∀i ∈ V . In the context considered in this paper, the local best strategy has
an important additional role in the convergence of the algorithm. CC-PSO
with sequential update timing is known to suffer from a stagnation problem
that is caused by the restriction that only one swarm is updated at a time,
[32]. The parallel update timing version can present a similar problem. This
is mainly due to the fact that each swarm puts together its context vectors
by employing the single best collaboration technique, i.e. using the other
swarm global bests. Thus the particles, and the personal bests, are restricted
to one hyperplane of the search space, and this limits its exploration. The
algorithm can be remarkably improved by employing the local bests when
composing the context vectors, i.e.

xl
i,p , (l1,p, · · · , xi,p, · · · , lN,p)

bli,p , (l1,p, · · · , bi,p, · · · , lN,p)

where we renamed xl
i,p, and b

l
i,p, respectively the context vector, and the

personal best context vector associated to the particle xi,p. This strategy is
depicted in the example of Fig. 10, where we show a search space of dimension
2, Np = 4 particles, and the corresponding context vectors for the swarm
associated to the x1 component.
In this paper we make use of the singly-linked ring structure for Sp, described
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x1,1 x1,2x1,3 x1,4

(a) Single best strategy.

x2

x1
l2,1

l2,2, l2,4

l2,3

x1,1 x1,2x1,3 x1,4

(b) Local best strategy.

Figure 10: Local best based context vectors (dots) for the x1 component.

in [43], where we can select the number Nv of particles belonging to each
subset Sp. In order to show the improvement brought by the described
strategy, let us provide the following example. Consider the cost function

F (x1, x2) = 3(1− x1)
2e−x2

1
−(x2+1)2+

− 10(x1/5 − x31 − x52)e
−x2

1
−x2

2 − 1/3e−(x1+1)2−x2

2 (19)

In the region defined by [−2.5, 2.5] × [−2.5, 2.5], among its minima, func-
tion (19) has a global minimum in A = (0.2282;−1.626) where its value is
−6.5511, and a higher local minimum in B = (−1.347; 0.2045) where its value
is −3.0498. We run 1000 times the damped CC-PSO algorithm with parallel
update timing for both the case of single best, and local best strategy. As
far as the latter is concerned we select Nv = 2, while for both strategies we
choose Np = 40, and β = 0.4. While for the local best strategy the algorithm
converges to the global minimum for the totality of the trials, the single best
one attains A the 70% of them while for the remaining 30% it converges to
B. This fact is representative of the benefit gained by using the local bests
to compose the context vectors.

5.4. Wake Model Approximation for Reduced Communication

Since according to the considered wake model each upstream WT influ-
ences every downstream one, and because of communication Assumption 2, it
would be generally required to implement a complete communication graph,
i.e. there should be a direct communication between any two WTs in a WF.
However, from a practical point of view, the physical graph Gp, and the ac-
cording Gc, can be highly reduced because the wake interaction between two
enough distant WTs is negligible, especially if they are not aligned in the
wind direction. The idea is thus to reduce the WTs physical neighborhoods,
leading to an approximated wake interaction model, which would in turns
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allow the proposed DPSO to run on a reduced communication graph. In
this work we propose to define the WT i communication neighborhood by
acting on two newly introduced parameters, namely ψd,i, and ψt,i. These de-
fine respectively a distance in the wind direction, and a distance in the cross
direction of the wind. Such parameters are in fact function of θW : ψd,i(θ

W ),
ψt,i(θ

W ). The neighborhood of WT i is obtained as shown in Fig. 11. For a

x

y

i

y′

x′

WT sup
i

ψt,i

ψd,i

v∞

θW

Figure 11: Rectangular neighborhood via ψd,i and ψt,i: WTup
i in light grey area, WT down

i

in light blue area.

given wind direction θW , by selecting a value for the aforementioned param-
eters, a rectangle centered in WT i is obtained. Then, all the WTs laying
within it are part of the communication neighborhood of WT i. The rect-
angular form is justified to allow flexibility to the degree of wake interaction
approximation. Typically ψd,i > ψt,i, as the wake coupling of WTs aligned
in the wind direction is stronger. The neighborhood defined via the men-
tioned parameters can be further divided in the upstream turbines subset,
which we name WT up

i , i.e. WT i physical neighbors, and the downstream
turbines subset, which we name WT down

i , i.e. those turbines for which WT
i is a physical neighbor. WT sup

i , defined as the most upstream WT in the
approximated neighborhood of WT i, belongs to WT up

i . Values for ψd,i, and
ψt,i for each wind direction of interest can be found in such a way that they
guarantee a satisfactory solution to the optimization problem. This can be
done off-line and via simulation. The obtained functions ψd,i(θ

W ), ψt,i(θ
W )

can be thus stored in the corresponding WT i, for instance, via a lookup
table. Based on this knowledge and on the following assumptions, each WT
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can compute its own neighborhood.

Assumption 3. Each WT has knowledge of the number N of WTs in the
wind farm, and their position (xi, yi), i = 1, . . . , N with respect to a given
reference frame.

Assumption 4. Each WT measures (vi, θi), i.e. the speed and direction of
the wind blowing in the front of their rotor plane.

Because of Assumption 1, then θi ≃ θW , ∀i ∈ V . Thus, given θW , the
subroutine that the generic WT i has to perform to compute its neighborhood
is shown in Algorithm 2, where (x′i, y

′
i) values are computed via (3).

Algorithm 2 Wind Turbine i Neighborhood Computation

Input: (x′i, y
′
i), i = 1, . . . , N

Output: WT sup
i , WT up

i , WT down
i

1: distance = y′i
2: WT sup

i = {}, WT up
i = {}, WT down

i = {}
LOOP Process

3: for (j = 1 to N) and (j 6= i) do
4: if (|x′i − x′j| < ψt,i) and (|y′i − y′j| < ψd,i) then
5: Establish communication between WT i and WT j
6: if y′j < y′i then
7: Add WT j to WT up

i

8: else

9: Add WT j to WT down
i

10: end if

11: if y′j < distance then

12: WT sup
i = j

13: distance = y′j
14: end if

15: end if

16: end for

17: return WT sup
i , WT up

i , WT down
i

5.5. Fundamental Wind Farm DPSO algorithm

We are now ready to provide the proposed DPSO algorithm to solve (17).
This is shown in Algorithm 3, which is written for the generic WT i.
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Algorithm 3 DPSO for the Wind Farm Optimization Problem
Output: Local bests: li,p, p = 1, . . . , Np

Initialization :
1: Randomly initialize xi,p ∈ [x, x̄], si,p ∈ [−s̄, s̄], p = 1, . . . , Np

2: bi,p = xi,p, p = 1, . . . , Np

3: Randomly initialize li,p ∈ [x, x̄], p = 1, . . . , Np

4: Initialize vi,p = vi, p = 1, . . . , Np

LOOP Process

5: for k = 1 to max iter do

6: Send xi,p, bi,p, li,p, vi,p p = 1, . . . , Np to WT k ∈ WT down
i , via Gc

7: Wait to receive xj,p, bj,p, lj,p, vj,p p = 1, . . . , Np from WT j ∈ WT
up
i , via Gc

8: Compose the context vectors associated to the its own particles xi,p: x
l
i,p , (xi,p, lj,p : j ∈ WT

up
i ),

p = 1, . . . , Np

9: Compose the context vectors associated to its own personal bests bi,p: b
l
i,p , (bi,p, lj,p : j ∈ WT

up
i ),

p = 1, . . . , Np

10: Compose the context vectors associated to the particles xj,p of its neighbors j ∈ WT
up
i :

xl
j,p , (xj,p, li,p, lk,p : k ∈ WT

up
i ∧ k 6= j), p = 1, . . . , Np

11: Compose the context vectors associated to the personal bests bj,p of its neighbors j ∈ WT
up
i :

blj,p , (bj,p, li,p, lk,p : k ∈ WT
up
i ∧ k 6= j), p = 1, . . . , Np

12: Among the received vj,p, select vk,p where k = WT
sup
i , for p = 1, . . . , Np

13: Compute vi,p according to the wake model, using vk,p as upstream wind value, and xl
i,p as

operating points, for p = 1, . . . , Np

14: Evaluate particle context vectors xl
i,p in Pi:

Px
i,p , Pi(x

l
i,p), p = 1, . . . , Np

15: Evaluate personal best context vectors bli,p in Pi:

P b
i,p , Pi(b

l
i,p), p = 1, . . . , Np

16: Evaluate particle context vectors xl
j,p ∀j ∈ WT

up
i in Pi:

P
x,j
i,p , Pi(x

l
j,p), p = 1, . . . , Np

17: Evaluate personal best context vectors blj,p ∀j ∈ WT
up
i in Pi:

P
b,j
i,p , Pi(b

l
j,p), p = 1, . . . , Np

18: Send P
x,j
i,p , P b,j

i,p , p = 1, . . . , Np to the corresponding WT j ∈ WT
up
i , via Gc

19: Wait to receive P
x,i
k,p

, P b,i
k,p

, p = 1, . . . , Np from the corresponding WT k ∈ WT down
i , via Gc

20: Compute fitness function values Fx
i,p, p = 1, . . . , Np

21: Compute fitness function values F b
i,p, p = 1, . . . , Np

22: Update personal bests for p = 1, . . . , Np

(

bnew
i,p , F

b,new
i,p

)

=







(

xi,p, F
x
i,p

)

if Fx
i,p < F b

i,p
(

bi,p, F
b
i,p

)

otherwise

23: bi,p = bnew
i,p ; F b

i,p = F
b,new
i,p

24: Update local bests for p = 1, . . . , Np

lnew
i,p = li,p − β

(

arg min
{bi,p∈Sp}

{

F b
i,p

}

− li,p

)

25: li,p = lnew
i,p , p = 1, . . . , Np

26: Perform PSO update (12), with box constraints handled via (20), (21)
27: end for

28: return li,p, p = 1, . . . , Np
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First of all notice that the box constraints on the axial induction factor
are handled via

si,p(k + 1) , max{min{si,p(k + 1), s̄},−s̄} (20)

xi,p(k + 1) , max{min{xi,p(k + 1), x̄}, x} (21)

where x = 0, x̄ = 1/3, s̄ , 1/2(x̄− x), and where (20), (21) are added respec-
tively after the first and the second equation in (12).
Secondly, we introduce a wind speed variable that allows a proper power
function computation. This is explained in the following. Recall that in
order to compute its own power function Pi via (6), each WT i needs to
compute the wind speed value v̄i. According to the original wake model of
Section 2, this depends on the upstream WTs axial induction factors, and on
v∞, the free stream wind speed captured by the most upstream WTs in the
WF. Because of the approximated neighborhood introduced in the previous
subsection, each WT i now has its own most upstream WT, i.e. WT sup

i .
WT sup

i wind speed is thus the value that WT i uses to compute its own
power function. Since WT sup

i wind speed value ∀i ∈ V is in turns function
of the upstream WT axial induction factors, it changes during the run of
the algorithm, and it needs to be updated at each iteration step. The above
considerations are implemented in Algorithm 3 by associating a wind speed
value vi,p to each particle in WT i. These values are initialized in the WT i
measured one, vi. At each iteration, each WT i sends these values in Step 6
to WT down

i , and it receives the wind speed variables vj,p from WTs j in its
physical neighborhood WT up

i , for p = 1, . . . , Np, in Step 7. Then, in order
to update its own wind speed values vi,p, p = 1, . . . , Np, in Step 12, WT i
selects the wind values vk,p, p = 1, . . . , Np, belonging to the most upstream
WT in its neighborhood, i.e. k = WT sup

i . In Step 13, vi,p p = 1, . . . , Np are
updated.
Once the power functions have been evaluated in the required context vec-
tors, and sent back to the according WTs, each WT i can compute the
fitness function values associated to its particles context vectors, F x

i,p, and
to its personal bests context vectors, F b

i,p. This is done in Steps 17, and 18
respectively. The computation formula for F x

i,p is

F x
i,p , −P x

i,p −
∑

k∈WT down
i

P x,i
k,p (22)

Similar results hold for F b
i,p. All in all, each iteration of the algorithm requires
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each WT to exchange information with its neighbors in WT up
i and WT down

i

twice. Moreover, at each iteration WT i evaluates 2Np(|WT up
i | + 1) times

its private cost function Pi, where |WT up
i | indicates the cardinality of the set

WT up
i .

5.6. Extension to the Constrained Case

Once set the basics to solve (17), it is fairly easy to extend them to treat
the power constraints. In this case we add the following inequality constraints
to (17)

Pi(αi,αij) ≤ min

{

Pn,
Pmax
wf

N

}

i = 1, . . . , N (23)

First of all this implies that the maximum allowed WF power is equally
distributed among the WTs. Other distribution strategies are beyond the
scope of this paper and they will not be treated further. Secondly, it requires
each WT to have knowledge of Pmax

wf . This piece of information can be
forwarded to the WTs of the WF via Gc. Constraints (23) can be integrated
in Algorithm 3 via Deb’s rule. This technique exhibits some interesting
properties which make it eligible for the application of plenty constrained
optimization problems. Indeed, even if belonging to the penalty function
approaches, it does not require any penalty parameter. Moreover, it allows
avoiding any cost function distortion that may occur when incorporating the
constraints in the problem via penalty functions. Deb’s rule consists of a
tournament selection in which, when comparing two solutions of (17), (23),
the following criteria is adopted

a) Any feasible solution is preferred to any infeasible solution.
b) Among two feasible solutions, the one having better objective function

value is preferred.
c) Among two infeasible solutions, the one having smaller constraint viola-

tion is preferred.

This can be easily done by replacing fitness function (22) with

F̃ x
i,p , −P x

i,p −
∑

k∈WT down
i

P x,i
k,p

Gx
i,p , P x

i,p −min

{

Pn,
Pmax
wf

N

}

F x
i,p ,

{

F̃ x
i,p if Gx

i,p < 0

Gx
i,p otherwise
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6. Simulations

In order to test DPSO performance we provide simulations for both the
inactive and active constraints case in the WF optimization problem. For
all the simulations we consider WFs having the layout structure shown in
Fig. 12, whose WTs have R = 63 m, and nominal power Pn = 5 MW.
Moreover we consider parameters ψd,i, and ψt,i to be the same for each WT.

x

y

v∞

θW

14R

14R

14R

14R
20.8R

Figure 12: Horns Rev 1 wind farm layout.

We can thus drop index i. This choice simplifies the WT communication
neighborhood computation and it can be generally applied for WFs having
a regular layout structure. As far as the DPSO parameters are concerned
we select Np = 10 particles associated to each WT, a particle neighborhood
dimension equal to Nv = 2, and a damping factor β = 0.8.

6.1. Unconstrained WF Optimization

The test is carried out for a free wind speed value v∞ = 7 m/s, and
wind directions θW = 0◦, 90◦. Moreover to test the algorithm scalability
we consider two WFs having N = 81, and N = 196 WTs respectively, and
same number of WTs along the x and y direction. For both WFs and wind
directions, parameters ψd(θ

W ), and ψt(θ
W ) are such that the minimum num-

ber of direct communications required by at least one WT in the farm, i.e.
C , mini=1,...,N

{

|WT up
i |+ |WT down

i |
}

, is C = 2, and its maximum value,

i.e. C̄ , maxi=1,...,N

{

|WT up
i |+ |WT down

i |
}

, is C̄ = 4. Notice also that the
above parameters values directly influence the algorithm required computa-
tional time as they set the physical neighborhood dimension |WT up

i | for each
WT i. Since DPSO is a synchronous algorithm, the bottleneck concerning
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Figure 13: Simulations for the unconstrained case, i.e. v∞ = 7 m/s, and no Pmax
wf con-

straint. For each couple of chosen WF size N and wind direction θW , we provide a) an
example of the global best vector of α values trajectory, converging to a solution, against
the number of iterations, b) the mean value of the wind farm power function P̄wf , in blue
solid line, and the interval defined by the standard deviation σP , P̄wf ± σP , shown in the
grey area, against the number of cost function evaluations per WT, and where P̄wf and
σP are computed out of 20 DPSO algorithm trials.

its computational time is represented by those WTs having highest |WT up
i |

value. First of all this is due to the fact that |WT up
i | influences the complexity

of WT i power function Pi. Basically WT i has to compute the wake effect
caused by each WT belonging to WT up

i , via (5). Secondly, recall that each
WT i has to evaluate its power function 2Np(|WT up

i |+1) times per iteration.
For the considered wake model, DPSO parameters, and communication pa-
rameters, the computational time required at each iteration is CT ≃ 0.1 ms1.
DPSO convergence performance is illustrated in Fig. 13. Here, for each con-
sidered couple of WF size N and wind direction θW , we first show an example
of the global best vector trajectory during the run of the DPSO algorithm. In
particular, for each algorithm iteration we are able to see the N global best
axial induction factors α, entries of the global best vector, found by DPSO.
As expected, according to the wind direction, a certain number of α values
converges to 1

3
, meaning that the corresponding WTs are operated in MPPT

mode. These are the WTs that, because of their position with respect to the
wind direction, do not cause any wind speed reduction to any downstream

1Computations are carried on an Intel R©CoreTMi5, CPU @ 2.30 GHz, RAM of 8 GB,
with MATLAB R©R2017b.
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WT. The remaining axial induction factors all converge to lower values than
1
3
, meaning that the corresponding WTs are required to reduced their own

wind power extraction in order to maximize the WF one.
Secondly, in Fig. 13, we show the mean and standard deviation of the WF
power, evaluated in the global best α values, respectively P̄wf and σP , com-
puted for each algorithm iteration, and out of 20 algorithm trials. In partic-
ular, P̄wf ± σP values are shown against the number of local power function
evaluations required by the WTs with highest |WT up

i |. From this, first of all
we are able to conclude on the algorithm robustness, as the grey area repre-
senting P̄wf ±σP is almost indistinguishable from P̄wf , reported in blue solid
line. This means that, despite the DPSO aleatory feature, the algorithm
always converges to the same value and in almost the same way. Secondly,
we are able to see that the algorithm reaches a stable solution in a relatively
small number of iterations and according number of function evaluations per
WT. Because of the aforementioned computational time value CT , if the
time delay due to the communication steps is small, then DPSO proves to
be eligible for real-time operations, as typically the WT dynamics has a re-
sponse time on the order of seconds. Finally, in Table 1 we report, for each
considered case, the obtained WF power value Pwf , the power gain G with
respect to the greedy WF operation, and the loss L, due to the wake model
approximation, with respect to the case of complete communication.

Table 1: WF power gains when constraints are inactive.

N θW (◦) Pwf (MW) G (%) L (%)

81 0 91.02 6.4 0.3

81 90 68.58 20.7 1.7

196 0 214.63 6.8 0.6

196 90 156.65 23.5 2.7

6.2. Constrained WF Optimization

For the active constraints case we first propose a similar simulation to the
one shown in the previous subsection. In particular we consider the same WF
examples and same wind directions, but we select a free wind stream speed
value equal to 14 m/s, so that the WTs are likely to have their nominal power
constraint active. This is the only power constraint considered in this first
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simulation. Similarly to Fig. 13, in Fig. 14, for each case we report an example
of global best axial induction factors convergence, and P̄wf ± σP computed
out of 20 algorithm trials, where we also show the WF nominal power in
black dash-dot line. Because of the chosen v∞ value, the WF operates at its

Figure 14: Simulations for the constrained case, i.e. v∞ = 14m/s, and no Pmax
wf constraint.

For each couple of chosen WF size N and wind direction θW , we provide a) an example of
the global best vector of α values trajectory, converging to a solution, against the number
of iterations, b) the mean value of the wind farm power function P̄wf , in blue solid line,
and the interval defined by the standard deviation σP , P̄wf ± σP , shown in the grey area,
against the number of cost function evaluations per WT, and where P̄wf and σP are
computed out of 20 DPSO algorithm trials. The black dash-dot line represents the WF
nominal power.

nominal value for all the considered examples. As expected, this results in a
choice of optimal axial induction factors having values lower than 1

3
, as every

WT hits its nominal power constraint. Moreover this allows us to conclude on
the good DPSO robustness in finding the optimal solution in the constrained
case too. Indeed, for every considered case, the algorithm converges to a
combination of axial induction factors yielding the WF nominal power, which
is the maximum allowed value respecting the WF constraints. It could be
argued that in this case one could simply saturate each WT at its nominal
power value, without the need for performing any optimization. However,
whether the WF operates at its nominal value or not is generally not known
a priori on the only basis of (v∞, θ

W ) values. Such piece of information is
issued from the optimization step itself. Moreover, the situation gets even
more complex if one thinks about all the possible wind conditions combined
with any possible Pmax

wf value. In Table 2 we report the required minimum
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and maximum number of direct communications among the WTs for each
case, and the according CT per iteration imposed by the WTs with highest
|WT up

i |. From this, as well as from the evaluations per WT shown in Fig. 14,

Table 2: WF required communication and CT when constraints are active.

N θW (◦) C C̄ CT /iteration (ms)

81 0 8 15 ∼ 1.2

81 90 8 8 ∼ 0.4

196 0 18 40 ∼ 7.6

196 90 13 13 ∼ 1.2

it is clear that when constraints are active the convergence time is higher.
However, since the required number of iterations to a solution is low, if
we neglect the communication time delays, still the algorithm shows real-
time performance. This is directly due to the need for a higher number of
direct communications among the WTs, in turns due to the fact that in the
constrained case the wake approximation has to be highly reduced to let
DPSO find a feasible solution.
Eventually we show an example in which not all the constraints are active.
For this last simulation we consider WF Horn Rev 1 layout, where there are
10 WTs along the x direction, and 8 along the y direction. We additionally
take advantage of this case to give an example of grid power constraint, by
setting Pmax

wf equal to 63% of the WF nominal power. v∞ and θW are set equal
to 10 m/s and 45◦ respectively. In the above conditions, DPSO succeeds in
finding the WF axial induction factors combination yielding Pwf = Pmax

wf .
In Fig. 15, we show the WTs whose constraints are active, i.e. operating at
Pmax
wf /N.

7. Conclusion

We presented a novel approach allowing the WF optimization problem
to be treated in the MAS framework. The considered optimization problem
is the one of maximizing the WF power production by taking into account
the wake interaction among the WTs as well as the system constraints. By
combining the knowledge of the wake model and the use of a distributed
architecture, we are able to achieve fast convergence to a solution of the
optimization problem, which makes it eligible for real-time operations, such
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10 9 8 7 6 5 4 3 2 1

20 19 18 17 16 15 14 13 12 11

30 29 28 27 26 25 24 23 22 21

40 39 38 37 36 35 34 33 32 31

50 49 48 47 46 45 44 43 42 41

60 59 58 57 56 55 54 53 52 51

70 69 68 67 66 65 64 63 62 61

80 79 78 77 76 75 74 73 72 71

(v∞, θ
W )

Figure 15: Horn Rev 1 wind farm for active Pmax
wf constraint, v∞ = 10 m/s, and θW = 45◦.

The WTs with a blue circle are the one operating at Pmax
wf /N.

as satisfying the power constraints while tracking the wind speed variabil-
ity. The WF optimization is based on a novel distributed PSO algorithm.
The choice of such metaheuristic technique is justified as it enables treat-
ing a nonconvex problem with nonlinear constraints. This in turns has its
roots in the CC technique which we modified by mainly introducing a damp-
ing factor which enhances the algorithm convergence performance for those
optimization problems, such as the WF one, whose distribution among the
agents, reflecting the physics of the problem itself, does not match the prob-
lem separability structure. Distribution among the WTs is made possible
by exploiting the knowledge of their physical inter-dependencies as well as
an approximated wake model which lets the implementation of a reduced
communication graph. Performance shown in simulation is satisfactory, as
the algorithm proves to provide robust solutions in a relatively small number
of iterations, even for the case of large WFs.
The main drawback of the proposed approach is the need for an increas-
ing number of direct communications among the WTs with the growth of
the aerodynamic couplings when constraints are active. In the near future
it would be interesting to consider algorithm modifications allowing a fur-
ther reduced communication in the constrained case. Eventually it is worth
mentioning that the presented DPSO algorithm is poorly dependent on the
employed wake model, since its main requirements are a model description
based on the WTs yaw angle and axial induction factor, and the capability to
evaluate its particles in the WF power function. This makes it applicable to
a great variety of existing wake models in the literature. For instance, a sim-
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ple model modification could be introduced by considering a wake expansion
accounting for the wind turbulence as shown in [27].
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[28] Á. Jiménez, A. Crespo, E. Migoya, Application of a les technique to
characterize the wake deflection of a wind turbine in yaw, Wind energy
13 (6) (2010) 559–572.

39



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

[29] F. Ebrahimi, A. Khayatiyan, E. Farjah, A novel optimizing power con-
trol strategy for centralized wind farm control system, Renewable En-
ergy 86 (2016) 399–408.

[30] G. Delille, G. Malarange, C. Gaudin, Analysis of the options to re-
duce the integration costs of renewable generation in the distribution
networks. part 2: A step towards advanced connection studies taking
into account the alternatives to grid reinforcement, 22nd International
Conference and Exhibition on Electricity Distribution (CIRED) (2013)
1356.

[31] M. A. Potter, K. A. De Jong, A cooperative coevolutionary approach to
function optimization, in: International Conference on Parallel Problem
Solving from Nature, Springer, 1994, pp. 249–257.

[32] F. Van den Bergh, A. P. Engelbrecht, A cooperative approach to particle
swarm optimization, IEEE transactions on evolutionary computation
8 (3) (2004) 225–239.

[33] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization us-
ing cooperative coevolution, Information Sciences 178 (15) (2008) 2985–
2999.

[34] R. P. Wiegand, An analysis of cooperative coevolutionary algorithms,
Ph.D. thesis, George Mason University Virginia (2003).

[35] E. Popovici, K. De Jong, Sequential versus parallel cooperative coevo-
lutionary algorithms for optimization, in: Evolutionary Computation,
2006. CEC 2006. IEEE Congress on, IEEE, 2006, pp. 1610–1617.

[36] J. Kenndy, M. Clerc, Standard pso (2006).
URL http://www.particleswarm.info/Standard_PSO_2006.c

[37] Y. Wakasa, S. Nakaya, Distributed particle swarm optimization using
an average consensus algorithm, in: Decision and Control (CDC), 2015
IEEE 54th Annual Conference on, IEEE, 2015, pp. 2661–2666.

[38] N. Gionfra, G. Sandou, H. Siguerdidjane, P. Loevenbruck, D. Faille, A
novel distributed particle swarm optimization algorithm for the optimal
power flow problem, in: Control Technology and Applications (CCTA),
2017 IEEE Conference on, IEEE, 2017, pp. 656–661.

40



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

[39] Y. Wakasa, S. Yamasaki, Distributed particle swarm optimization based
on primal-dual decomposition architectures, in: Proceedings of the
ISCIE International Symposium on Stochastic Systems Theory and its
Applications, Vol. 2015, The ISCIE Symposium on Stochastic Systems
Theory and Its Applications, 2015, pp. 97–101.

[40] V. Gazi, R. Ordonez, Particle swarm optimization based distributed
agreement in multi-agent dynamic systems, in: Swarm Intelligence
(SIS), 2014 IEEE Symposium on, IEEE, 2014, pp. 1–7.

[41] I. Navarro, E. Di Mario, A. Martinoli, Distributed particle swarm
optimization-particle allocation and neighborhood topologies for the
learning of cooperative robotic behaviors, in: Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, IEEE,
2015, pp. 2958–2965.

[42] W. Rivera, Scalable parallel genetic algorithms, Artificial intelligence
review 16 (2) (2001) 153–168.

[43] A. H. Aguirre, A. M. Zavala, E. V. Diharce, S. B. Rionda, Copso: Con-
strained optimization via pso algorithm, Center for Research in Mathe-
matics (CIMAT). Technical report No. I-07-04/22-02-2007.

41



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

Metaheuristic optimization efficiently solves the wind farm power maximization problem 

 

Real-time performance is achieved via model-based distributed optimization  

 

Cooperative co-evolution allows the problem distribution among the wind turbines  

 

Power constraints are simply handled in the optimization problem via Deb’s rule 




