J. Park and K. H. Law, Cooperative wind turbine control for maximizing wind farm power using sequential convex programming, Energy Conversion and Management, vol.101, pp.295-316, 2015.

S. Howell, Y. Rezgui, J. Hippolyte, B. Jayan, and H. Li, Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources, Renewable and Sustainable Energy Reviews, vol.77, pp.193-214, 2017.

M. W. Khan and J. Wang, The research on multi-agent system for microgrid control and optimization, Renewable and Sustainable Energy Reviews, vol.80, pp.1399-1411, 2017.

P. Fleming, P. Gebraad, J. Van-wingerden, S. Lee, M. Churchfield et al., Sowfa supercontroller: A high-fidelity tool for evaluating wind plant control approaches, 2013.

V. Santhanagopalan, M. Rotea, and G. Iungo, Performance optimization of a wind turbine column for different incoming wind turbulence, Renewable Energy, vol.116, pp.232-243, 2018.

J. Park and K. H. Law, Layout optimization for maximizing wind farm power production using sequential convex programming, Applied Energy, vol.151, pp.320-334, 2015.

J. Feng and W. Z. Shen, Solving the wind farm layout optimization problem using random search algorithm, Renewable Energy, vol.78, pp.182-192, 2015.

W. Li, E. Özcan, and R. John, Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation, Renewable Energy, vol.105, pp.473-482, 2017.

H. Huang, Distributed genetic algorithm for optimization of wind farm annual profits, in: Intelligent Systems Applications to Power Systems, ISAP 2007. International Conference on, pp.1-6, 2007.

J. S. González, M. B. Payán, J. R. Santos, and Á. G. Rodríguez, Maximizing the overall production of wind farms by setting the individual operating point of wind turbines, Renewable Energy, vol.80, pp.219-229, 2015.

P. Gebraad, F. Teeuwisse, J. Wingerden, P. A. Fleming, S. Ruben et al., Wind plant power optimization through yaw control using a parametric model for wake effects -a cfd simulation study, Wind Energy, vol.19, issue.1, pp.95-114, 2016.

J. Park and K. H. Law, A data-driven, cooperative wind farm control to maximize the total power production, Applied Energy, vol.165, pp.151-165, 2016.

J. Lee, E. Son, B. Hwang, and S. Lee, Blade pitch angle control for aerodynamic performance optimization of a wind farm, Renewable energy, vol.54, pp.124-130, 2013.

U. Ciri, M. A. Rotea, and S. Leonardi, Model-free control of wind farms: A comparative study between individual and coordinated extremum seeking, Renewable Energy, vol.113, pp.1033-1045, 2017.

P. A. Fleming, P. M. Gebraad, S. Lee, J. Van-wingerden, K. Johnson et al., Evaluating techniques for redirecting turbine wakes using sowfa, Renewable Energy, vol.70, pp.211-218, 2014.

L. Wang, A. Tan, and Y. Gu, A novel control strategy approach to optimally design a wind farm layout, Renewable Energy, vol.95, pp.10-21, 2016.

F. Heer, P. M. Esfahani, M. Kamgarpour, and J. Lygeros, Model based power optimisation of wind farms, Control Conference (ECC), 2014.

I. European, , pp.1145-1150, 2014.

J. Herp, U. V. Poulsen, and M. Greiner, Wind farm power optimization including flow variability, Renewable Energy, vol.81, pp.173-181, 2015.

J. Tian, C. Su, M. Soltani, and Z. Chen, Active power dispatch method for a wind farm central controller considering wake effect, IECON 2014-40th Annual Conference of the IEEE, pp.5450-5456, 2014.

P. M. Gebraad, F. C. Van-dam, and J. Van-wingerden, A model-free distributed approach for wind plant control, pp.628-633, 2013.

J. Barreiro-gomez, C. Ocampo-martinez, F. Bianchi, and N. Quijano, Model-free control for wind farms using a gradient estimation-based algorithm, Control Conference (ECC), pp.1516-1521, 2015.

J. R. Marden, S. D. Ruben, and L. Y. Pao, A model-free approach to wind farm control using game theoretic methods, IEEE Transactions on Control Systems Technology, vol.21, issue.4, pp.1207-1214, 2013.

S. Behera, S. Sahoo, and B. Pati, A review on optimization algorithms and application to wind energy integration to grid, Renewable and Sustainable Energy Reviews, vol.48, pp.214-227, 2015.

K. Deb, An efficient constraint handling method for genetic algorithms, Computer methods in applied mechanics and engineering, vol.186, issue.2, pp.311-338, 2000.

N. O. Jensen, A note on wind generator interaction, 1983.

I. Katic, J. Højstrup, and N. O. Jensen, A simple model for cluster efficiency, in: European wind energy association conference and exhibition, pp.407-410, 1986.

L. Tian, W. Zhu, W. Shen, Y. Song, and N. Zhao, Prediction of multi-wake problems using an improved jensen wake model, Renewable Energy, vol.102, pp.457-469, 2017.

Á. Jiménez, A. Crespo, and E. Migoya, Application of a les technique to characterize the wake deflection of a wind turbine in yaw, Wind energy, vol.13, issue.6, pp.559-572, 2010.

F. Ebrahimi, A. Khayatiyan, and E. Farjah, A novel optimizing power control strategy for centralized wind farm control system, Renewable Energy, vol.86, pp.399-408, 2016.

G. Delille, G. Malarange, and C. Gaudin, Analysis of the options to reduce the integration costs of renewable generation in the distribution networks. part 2: A step towards advanced connection studies taking into account the alternatives to grid reinforcement, 22nd International Conference and Exhibition on Electricity Distribution (CIRED), p.1356, 2013.

M. A. Potter and K. A. Jong, A cooperative coevolutionary approach to function optimization, International Conference on Parallel Problem Solving from Nature, pp.249-257, 1994.

F. Van-den, A. P. Bergh, and . Engelbrecht, A cooperative approach to particle swarm optimization, IEEE transactions on evolutionary computation, vol.8, issue.3, pp.225-239, 2004.

Z. Yang, K. Tang, and X. Yao, Large scale evolutionary optimization using cooperative coevolution, Information Sciences, vol.178, issue.15, pp.2985-2999, 2008.

R. P. Wiegand, An analysis of cooperative coevolutionary algorithms, 2003.

E. Popovici and K. D. Jong, Sequential versus parallel cooperative coevolutionary algorithms for optimization, Evolutionary Computation, pp.1610-1617, 2006.

J. Kenndy, M. Clerc, and S. Pso, , 2006.

Y. Wakasa and S. Nakaya, Distributed particle swarm optimization using an average consensus algorithm, in: Decision and Control (CDC), IEEE 54th Annual Conference on, pp.2661-2666, 2015.

N. Gionfra, G. Sandou, H. Siguerdidjane, P. Loevenbruck, and D. Faille, A novel distributed particle swarm optimization algorithm for the optimal power flow problem, Control Technology and Applications (CCTA), 2017 IEEE Conference, pp.656-661, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01667868

Y. Wakasa and S. Yamasaki, Distributed particle swarm optimization based on primal-dual decomposition architectures, Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, vol.2015, pp.97-101, 2015.

V. Gazi and R. Ordonez, Particle swarm optimization based distributed agreement in multi-agent dynamic systems, Swarm Intelligence (SIS), pp.1-7, 2014.

I. Navarro, E. D. Mario, and A. Martinoli, Distributed particle swarm optimization-particle allocation and neighborhood topologies for the learning of cooperative robotic behaviors, Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pp.2958-2965, 2015.

W. Rivera, Scalable parallel genetic algorithms, Artificial intelligence review, vol.16, issue.2, pp.153-168, 2001.

A. H. Aguirre, A. M. Zavala, E. V. Diharce, and S. B. Rionda, Copso: Constrained optimization via pso algorithm, Center for Research in Mathematics (CIMAT)