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Abstract— Smart vision systems on a chip are promising for 

embedded applications. Currently, flexibility in the choice of 
integrated pre-processing tools is obtained at the expense of total 
silicon area and fill factor, which are otherwise optimized provided 
that the sensor performs a specific task. We propose a new 
architecture based on macropixel-level processing to improve the 
trade-off by using the same processing elements (PEs) for a whole 
group of pixels. In this paper, we show through transistor-level 
simulations the feasibility of using macropixel PEs. Their 
operative part is analog to avoid the bottleneck of analog to digital 
converters (ADC) and has digital control which is distributed in 
and out of the matrix of pixels. PEs are designed to be suitable for 
coefficient-reconfigurable spatial and temporal filtering. Sharing 
electronics among several pixels and matching existing algorithms 
to the target architecture allow for such programmability without 
degrading too much pixel area nor fill factor. 

Keywords— Smart image sensor, vision system on a chip (VSoC), 
focal-plane array, algorithm-architecture matching, mixed analog-
digital electronics. 

1 Introduction 

Smart Vision Systems-on-a-Chip (VSoCs) aim at outputting 
relevant information on the scene by performing low- and 
middle-level image processing, sometimes at the expense of 
image quality. Extracting image features such as edges or motion 
prior to transmitting it for further analysis can be a gain of speed 
and power consumption provided that the analog and digital 
processing units are co-designed and spatially distributed [1]. 
Such integrated imaging systems are becoming attractive for 
embedded applications such as drone vision thanks to their 
savings in area, power, weight and communication bandwidth 
[2]. They are also cost-effective, provided they are fabricated in 
standard (i.e. planar single-chip) CMOS image sensor (CIS) 
technology. 

This paper is dedicated to the proposal, analysis and design 
of a new architecture for smart image sensors addressing 
important issues of smart VSoCs based on standard CIS 
processes, in particular their poor balance between 
reconfigurability and pixel optimization. The state of the art of 
VSoCs presented in section 2 shows an unavoidable trade-off 
between versatility and pixel pitch as well as fill factor. In 
section 3, we propose a new design approach to reach an 
optimized solution regarding this trade-off, thanks to spatial 
distribution of processing elements. Section 4 details the 
hardware architecture of a programmable sensor based on this 

approach. Section 5 presents results of transistor-level 
simulations showing the feasibility of such an architecture, 
before section 6 concludes by the future work needed to 
implement a hardware prototype. 

2 VSoCs State of the Art 

During  the  last  decade  several  smart  vision  sensors  have 
been designed in standard CIS technology [1,3-17]. The 
increasing resolutions and frame rates result in a large data 
transfer between the imaging array and the processing unit. In 
order to avoid this highly energy consuming operation, image 
processing is moved as close as possible to the focal plane array. 
The straightforward approach is to implement in-pixel circuitry. 
Digital implementations offer high programmability: an 
example of the state of the art [3] performed edge detection, 
median filtering, histograms and tracking. But focal-plane 
digital circuits consume a lot of power and silicon area, 
especially through  analog to digital converters (ADCs) [3, 4]. 
On the other hand, analog computations become more attractive 
for specialized tasks (implying restricted programmability) since 
analog operations can run faster at lower power. Tradeoffs 
between functionalities and surface must then be found through 
algorithm-architecture matching techniques. Since our work is 
aimed at tightly-embedded applications, with strong 
requirements in terms of power consumption and surface, analog 
implementations seem more appropriate. Therefore, we focus 
here on analog implementations of common processing tasks 
such as edge detection using spatial convolution [1, 5], 
difference of averaged images [6] and neighbours comparison 
[7] ; motion detection using temporal difference [1, 7] ; or image 
enhancement [1, 8]. 

In-pixel processing loosens data throughput requirements in 
exchange for decreased fill factor. Hence a trade-off has to be 
made with image quality. Moreover, image processing tasks 
have been proven to benefit from spatial distribution of 
processing circuits [9]. Therefore an improvement is to also 
integrate processing circuits once for the whole matrix [10] or at 
the bottom of each column. For example, one can take advantage 
of the column-wise correlated double sampling circuit to 
perform temporal difference [11]. 

On top of pixel-wise, column-wise and array-wise 
processing, one can consider the macropixel approach: blocks of 
several pixels (e.g. from 3x3 to 32x32 pixels) processed as a 
whole. Virtual macropixels are used for region-of-interest 
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detection: pixels are processed together as a virtual cluster by 
out-of-the-matrix electronics or software. For example, this 
method is applied for spatial averaging [6, 12], computing of 
local integration time [13] or memory optimization by pixel 
interlacing [14]. On the other hand, the concept of macropixels 
can be implemented in hardware by mutualizing in-matrix 
circuitry for the block of pixels instead of repeating it in every 
pixel. Suárez et al. [15] proposed such a hardware macropixel: 
4 photodetectors share an amplifier and an ADC. A solution for 
Gaussian filtering is also implemented in [16], but it relies on a 
full resolution switched-capacitor network which does not really 
take advantage of the macropixel concept. 

In short, smart vision sensors currently perform one or 
several simple tasks such as: edge and/or motion detection [7], 
edge detection, high dynamic range and tracking [16], motion 
detection or low power imaging by programming pairs of pixels 
[17]. However, none of these systems grants real 
programmability in the choice neither of algorithms nor of the 
coefficients. 

On the other hand, analog programmable VSoCs have been 
proposed in [1, 8, 12], but with only in-pixel processing circuits 
and thus they suffer from very low fill factor (e.g. 5,4% in [12]). 

A key observation is that distributing analog processing in 
the matrix improves the area/programmability trade-off. Though 
a few programmable sensors do exist, there seems to be a lack 
of a tightly integrated solution. Therefore, in section 3, we 
introduce a new design approach, furthering the macropixel 
concept, for a highly distributed fully configurable smart image 
sensor. 

3 Algorithm-Architecture Matching for Distributed 
Electronics 

The goal of this work is to develop a smart image sensor, 
embedding digitally controlled analog processing circuits 
allowing for fully programmable image pre-processing tasks in 
the focal plane. This limits data transfers out of the system and 
thus energy consumption, by extracting relevant information as 
close as possible to the source. By distributing processing 
electronics between different levels - pixel, macropixel(s), 
column and whole matrix -, embedding more electronics for 
versatility purpose becomes possible without degrading 
significantly other characteristics such as fill factor or pixel size, 
so that smart high resolution sensors can be fabricated at low 
cost on standard CIS technology. 

The idea is to map common image processing operations to 
processing circuits that are distributed all over the matrix. In 
particular, we consider moving away from pixel by pixel 
operations towards macropixel-level processing in both spatial 
and temporal image analysis tasks. Moreover, globalized 
programmable processing elements allow for electronic 
resources reuse for different tasks. 

1 Spatial Convolution 

Spatial convolution is widely used in pre-processing tasks 
such as edge detection or filtering, so efficiently implemented 
coefficient-programmable spatial convolution is of great 
interest.  It has been done at pixel-level [1,5] but this implies 
high sensing surface loss in each pixel. A new solution is 

proposed here using macropixel-level implementation. The idea 
is to limit the number of processing elements (PEs) and 
interconnections inside the matrix. Therefore each pixel is linked 
to only one PE, and one PE manages as many pixels as the size 
of the mask (i.e. kernel), for ease of use of the control. Each PE 
is identical and performs the linear combination of the linked 
pixels weighted by the chosen coefficients of the mask. The 
result is then a down-sampled convolution since there is no 
superposition of the kernels (see Fig. 1). Hence drastic data and 
in-matrix circuitry reduction is obtained (division by the size of 
the mask) at the cost of quality loss due to downsampling. 

 This theoretical adaptation of convolution has been 
functionally tested through Matlab simulations. An illustrative 
result is displayed on Fig. 2.  

 This down-sampled convolution has also been applied to the 
Histogram of Oriented Gradient (HOG) algorithm, which is 
widely used for pedestrian detection [18]. The first step of this 
algorithm is the gradient computation, which can be done by 
applying a {-1 0 1} mask or a Sobel mask, or else directly in 
polar coordinates [19].  

 Results with SVMs (Support Vector Machines) trained by 
600 positive images and 600 negative images from an INRIA 
dataset, for each algorithm, are listed in Table 1. Tests were 
conducted on 200 positive and 100 negative images from the rest 
of the INRIA dataset. Optimizing the training of the SVM is out 
of the scope of this paper. We simply used the same sets of 
images to qualitatively compare different low-level algorithms. 
Table 1 shows that using down-sampled convolution on 
cartesian or polar gradients gives comparable results to an 
implementation of classic HOG algorithm for false negative 
images.  The down-sampled convolution shows a much higher 
rate of false positive detections. This can be explained by the fact 
that during training of positive images, edges can be lost and 

 
Fig. 1  Principle of the down-sampled convolution: linear combination of a 
Sobel mask with pixels of the image is done once instead of nine times for a 
3x3 kernel 

TABLE 1:  COMPARISON OF IMPLEMENTATIONS OF HOG ALGORITHM 

 

Type of HOG 

Classic 
HOG 

Down-
sampling 

Polar 
gradient 

Down-
sampling 
of polar 
gradient 

Classic 
HOG - 
single 
large 
pixel 

False 
positive 
images 
(%) 

0 14 0 4 13 

False 
negative 
images 
(%) 

6 8 5 8.5 10 
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thus the SVM is considering non-pedestrian edges as pedestrian 
edges. For most applications, such as military detection of 
suspect person or pedestrian detection for automotive avoidance, 
false positive detections are not a critical issue. So for a 
negligible loss of quality, the proposed method divides by 9 the 
amount of electronic processing in the matrix for a 3x3 kernel 
convolution. 

Besides, errors in the calculation of the downsampled 
convolution were simulated through addition of a normal law of 
chosen standard deviations. Simulations showed that to keep 
false positive and negative results comparable to those obtained 
with the ideal HOG algorithms, the standard deviation of the 
final error must be kept below 0.25. Having an adapted 
algorithm still effective with up to 25% error of cumulated 
computation loosens constraints on an analog implementation. 

2 Temporal Difference 

The same design methodology has been applied to temporal 
difference, which is a common technique for motion and 
Regions of Interest detection. Downsampling by 3x3 pixels 
seems to induce too much information loss, but downsampling 
by 2x2 appears to be a better trade-off between area saving and 
quality, as shown in Fig. 3. 

Concerning spatial convolution, for a similar fill factor and 
final resolution, one could suggest using classic 3x3 
convolution, with a single large pixel instead of a group of 9. 
This scheme is evaluated through HOG algorithm in the last 
column of Table 1. Results are comparable with other 
implementations, but a 2x2 temporal difference on fine pixels 
could not be implemented for instance. 

3 Resources Reuse 

The presence of a coefficient-programmable processing 
element allows for reusing it for different tasks. For instance, 
temporal difference can be computed with the same PE as spatial 
filtering using the appropriate set of coefficients. Note that if one 
PE is assigned to 3x3 pixels while temporal difference is to be 
computed on a 2x2 basis, a certain sequence of operations must 
be carried out. It takes longer than having a PE devoted to each 
temporal difference in parallel. But this is acceptable given the 
versatility gained with little added circuitry. 

a)    b)     c)  

Fig. 2  (a) Original image and (b,c) results of gradient computation using (b) classic convolution by a Sobel kernel (equivalent to 1 PE per pixel) and (c) down-
sampled convolution with same kernel (equivalent to 1 PE per 9 pixels), performed on the classic image of peppers (512x512 pixels result in (c) 170x170 pixels)  

a)    b)  

c)    d)  

Fig. 3  Temporal difference: (a) image from a video of a walking and waving 
man, (b) following image of the video, and thresholded differences of the two 
previous images with (c) a 1/(2x2) down-sampling or (d) a 1/(3x3) down-
sampling. (a) and (b) have a resolution of  240x320 pixels, and so (c) is 
120x160 and (d) is 80x107 pixels  

 
Fig.  4   Schematic of the 5T-pixel, with additional circuit (in grey) to 
memorize one frame (only for 1 pixel out of 4)   
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Besides, analog memory of a frame is usually obtained 
through storing capacitors. A suitable pixel implementation is 
presented on Fig. 4. It features a 5T-pixel with a photodiode reset 
to avoid blooming during the pre-processing computations (the 
pixel value being stored on the floating diffusion Cdiff). A second 
chain of  transfer gate-floating diffusion-source follower-select 
transistor is added on the pixels used for temporal difference. An 
available capacitor linked to a pixel permits high dynamic range 
(HDR) imaging, since this storage capacitor can receive the 
charge surplus from the photodiode under high illumination. 
Therefore, this overflow capacitor allows for extended range of 
sensed illumination [20]. In our proposed implementation, using 
the memory capacitor as an overflow capacitor would result in a 
downsampled HDR image.  

4 A Distributed Architecture 

  The proposed architecture consists of macropixels of a fixed 
size. Most kernels are 3x3 pixels (e.g. Sobel kernel) so we 
propose to fit this kernel size to the hardware architecture of PEs: 
macropixels are group of 3x3 pixels in this architecture. 
Temporal difference is on a 2x2 basis. Therefore there are 4 
types of macropixels that differ from each other in terms of 
position and number of added memories, as shown in Fig. 5, but 
that are otherwise identical. This results in a 6x6-pixel scheme 
which is the basic tile for designing a generic resolution image 
sensor.   

An example of operation using these macropixels is as 
follows. If a spatial convolution is requested, each PE performs 
it in its own macropixel, i.e. performs the linear combination of 
3x3 pixels. The result is a convoluted image with a 
downsampling of 3x3. If a temporal difference is demanded, first 
a full resolution image is taken and then a second 2x2 
downsampled image is taken and stored in the added memories. 
Then PEs perform the difference of the two images, on one pixel 
with memory for each PE, the matrix of macropixels is then read, 
and the difference is done on the second pixel with memory of 
each macropixel before another reading of the matrix, etc. 
Following this scheme, the “D” PE in the 6x6 scheme (Fig. 5) 
would work only once while the “A” PE would work four times 
meaning four computations and matrix readouts would be 
necessary. To limit this loss of speed of the system due to 
sequential computation, the workload is distributed among the 
PEs: pixel and memory #5 are managed by the “D” PE when 
temporal difference is demanded. The final result is a difference 
of two successive images with a downsampling of 2x2. 

 Since PEs must be able to perform convolutions, multiply 
and add operations are required. A parallelized implementation 
would imply as many multipliers as mask coefficients. The huge 
area cost takes it out of consideration. Moreover, it would be 
wasteful since masks containing zero coefficients would leave 
several multipliers unused. So we chose to have one multiplier 
and one accumulator for the sake of area and efficiency, at the 
cost of some velocity due to the sequential flow of operations. 
Note that those multiplier and accumulator are implemented in 
the analog domain, so that there is no ADC, which ensures fast 
computation and area savings. 

To go further in the sequential computation, one may 
consider  multiplication done by multiple accumulations of the 
same value. This technique avoids the use of a multiplier but 

 

PE A B C D 

Pixels with memory 1; 2; 4 3; 6 7; 8 5; 9 

Fig.  5  Schematic representation of the 6x6-pixel basic unit of the proposed 
matrix: 1 PE for 3x3 pixels, and 1 capacitor for 2x2 pixels. This should be 
replicated as much as necessary to build the whole matrix. The table presents 
the four PEs of a 6x6-pixel scheme and the pixels with added memory that 
they respectively manage during a temporal difference. Note that capacitor 5 
of the pattern is to be connected to the “D” PE so that each PE manages 3 
capacitors at the most 

a)  

b)    

Fig.  6   (a) Schematic of a switched-capacitor circuit able to perform 
positive and negative accumulations of a voltage value. Top : forward 
charging phase. Bottom : transfer phase. (b) Corrresponding timing 
diagram of the control of the analog accumulator for a [2 -1 -1, 0 0 0, 0 0 
0] mask. 1 controls switches A and D, 2 controls C, 3 controls B, 4 
controls E and G, and 5 controls F and H 
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allows only integers in the convolutive masks. This is not overly 
restrictive in our application since most of used masks or 
temporal difference only use integers. Other algorithms studied 
in the previous section (based on polar gradient) use non-
integers coefficients but since their results are of similar quality 
as the integer-based masks, we focus on the latter. 

A potential implementation is to use a switched capacitor 
circuit since they are well suited for integration (i.e. 
accumulation). A possible solution is presented in Fig. 6. Such a 
circuit performs accumulation with two repeated steps: first the 
input voltage is sampled on Cin capacitor, and then charges are 
transferred on Cout capacitor where they are accumulated over 
steps. As an amplifier, an inverter is used because only low gain 
is needed and this saves area. An offset compensation scheme 
(capacitor Cc) is used to cancel the influence of the offset of the 
inverter which changes according to process [21, 22]. Switch B 
allows for subtraction by reverse charging of the input, while 
switches E and F maintain the offset compensation. Convolution 
is enabled by connecting the outputs of the 9 pixels successively 
to the input of such an analog PE. 

The PEs are digitally controlled (through the switches in a 
switched capacitor implementation), and that can be done from 
the out-of-matrix digital logic. This would mean numerous 
control buses crossing the whole matrix. Instead, we propose to 
distribute digital control over the matrix as well as analog 
operative circuits, since this implies less metal tracks at the cost 
of only a few logic elements in each macropixel. 

This architecture is illustrated in Fig. 7. The exterior digital 
part controls the pixels (reset_pix, TX, reset_FD, TXmem, 
reset_Fdmem, see Fig 4.) and starts the PE with proc_enable (00 
for idle, 01 for classic 3x3 mask, 10 for temporal difference). 
Then the PE sequentially selects the needed pixels or capacitors 
(select_pix or select_mem), multiplying their output by the 
corresponding coefficient (coeff) coming from the external 
digital control. Once the accumulation is done, the macropixel 
acknowledges (ack) and waits to be selected and read 
(sel_macro). If macropixels have digital outputs (e.g. simple 1-

bit thresholding), they can be read all at once, and thus the 
system would be much faster. 

The architecture can be easily modified to also permit classic 
convolution or 5x5-mask convolution, at the cost of more 
complex sequences for the control of the analog operative parts. 
Output rate of the sensor might thus be lowered in those cases, 
but very few electronics have to be added.   

5 Transistor level simulations  

 The system was designed and simulated at transistor level 
in the AMS 0.35µm technology.  

1 Spatial Convolution 

To validate our system, simulations of spatial convolution 
were conducted. A Sobel mask such as the one presented in Fig. 
1 detects edges which can be used for pedestrian detection for 
instance. When it is applied to a macropixel, the value of the first 
pixel is charged backward in the accumulator for the -1 
coefficient and transferred on the output capacitor. Then the 
value of the second top pixel is charged backward and 
accumulated, twice for the -2 coefficient, etc. until the value of 
the bottom right pixel is charged forward in the accumulator and 
accumulated. So computation of a Sobel mask corresponds to 8 
accumulations only. 

The computation of Sobel masks (one for vertical and one 
for horizontal edges) on a complete image was simulated at 
transistor level. Results are shown on Fig. 8. The horizontal and 
vertical edges are clearly visible, as in Fig. 2, which presented 
results of functional simulations on the same image. So this 
shows that the analog processing part performs as expected. 

The histogram of oriented gradient (HOG) algorithm was 
applied to the electrically simulated images, corresponding to 
the second column of Table 1 (downsampling of classic HOG). 
The same SVM algorithm showed rates of 11% of false positive 
and 8% of false negative images. These results are as good as 
theoretical results (see Table 1) using the same machine learning 
and HOG algorithms, whose optimization is out of the scope of 
this work. This indicates this transistor-level implementation of 
such a smart sensor is appropriate for pedestrian detection for 
example. 

 
Fig. 8   Gradient computed from the results of Sobel transistor-level 
simulations of our system on the image of the peppers (see Fig. 2) 

 
Fig.  7  Schematic representation of the proposed sensor: out-of-matrix digital 
electronics control a macropixel PE, composed of digital control interfaced 
with the general out-of-matrix control, and an analog operative part: 1 
multiplier and 1 accumulator per macropixel (3x3 pixels) 
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2 Temporal Difference 

The implementation was also simulated for temporal 
difference. Results from the same video as in Fig. 3 of a man 
walking and waving his arms are presented on Fig. 9. The 
simulation shows that moving limbs are perfectly identifiable, as 
expected from the previous behavioral simulation results.  

 Considering results on pedestrian detection and temporal 
difference, both  the functional approach of spatial distribution 
of the PEs on a macropixel-level and its implementation through 
the described switched-capacitor circuit are shown to be 
appropriate for our applications. 

 The computation time of the switched capacitor circuit is 
0.2µs/accumulation. The different macropixels perform the 
operations in parallel (like a Single Instruction Multiple Data 
processor), so that the size of the focal plane array has no effect 
on the computation time. Since a Sobel kernel for example 
requires only 8 accumulations, and a temporal difference 3x2 
accumulations, the computation time is very short compared to 
the light integration time for this kind of technology (standard 
AMS 0.35µm), or the readout of the array of pixels. The sole 
bottleneck of the system could be that 3 readouts of the array are 
required for each pair of successive images in the temporal 
difference algorithm. 

6 Conclusion 

 This paper has described a new approach to designing smart 
image sensors. To increase versatility while keeping reasonable 
fill factor and pixel area, the concept of hardware macropixel is 
used. Thanks to algorithm-architecture matching, spatial 
filtering and temporal difference are adapted to be computed 
using digitally controlled analog processing elements distributed 
in each macropixel. We show through simulations that the loss 
of quality is inconsequential for a subsequent high-level image 
processing such as pedestrian detection, whose circuit 
implementation is out of the scope of this work. A general 
architecture for such a sensor has been presented, using an 
analog accumulator along with part of the digital control in the 
macropixel, and general digital control out of the matrix. An 
implementation of the accumulator with a switched-capacitor 
circuit has been presented. Transistor-level simulations with a 
0.35µm technology demonstrated that it is sufficient for both 
temporal difference and Sobel convolution for pedestrian 
detection. The layout of a chip implementing these concepts is 

currently underway. We aim at achieving 30% fill factor with 
one switched capacitor circuit (operative part) per macropixel. 
In the target AMS 0.35µm technology, the same kind of pixel 
without a PE nor memories reaches 37% fill factor which means 
the loss of fill factor is quite limited. Our architecture is aimed 
at focal plane arrays, but would find even greater benefit when 
used with 3D stacking technology, as could be discussed in 
furtherwork. 
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