F. Hoppenstaedt, Mathematical theories of populations: demographics, genetics and epidemics. Society for industrial and applied mathematics, 1975.

W. O. Kermack and A. G. Mckendrick, Contributions to the mathematical theory of epidemics-II. The problem of endemicity, Bulletin of mathematical biology, vol.53, pp.57-87, 1991.

J. E. Van-der-plank, Plant diseases: epidemics and control, 2013.

J. Leskovec, L. A. Adamic, and B. A. Huberman, The dynamics of viral marketing, ACM Transactions on the Web (TWEB) 1, vol.1, 2007.

D. Zeng, H. Chen, R. Lusch, and S. H. Li, Social media analytics and intelligence, IEEE Intelligent Systems, vol.25, pp.13-16, 2010.

Y. Moreno, M. Nekovee, and A. F. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, vol.69, p.66130, 2004.

K. Balog, L. Azzopardi, and M. De-rijke, Formal models for expert finding in enterprise corpora, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, 2006.

W. H. Hsu, A. L. King, M. S. Paradesi, T. Pydimarri, and T. Weninger, Collaborative and Structural Recommendation of Friends using Weblog-based Social Network Analysis, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, vol.6, 2006.

L. Nowell, D. Kleinberg, and J. , The link prediction problem for social networks, Journal of the Association for Information Science and Technology, vol.58, pp.1019-1031, 2007.

B. Taskar, M. F. Wong, P. Abbeel, and D. Koller, Link prediction in relational data. Advances in neural information processing systems, 2004.

R. Cohen, S. Havlin, and D. Ben-avraham, Efficient immunization strategies for computer networks and populations, Physical review letters, vol.91, p.247901, 2003.

R. Pastor-satorras and A. Vespignani, Immunization of complex networks, Physical Review E, vol.65, p.36104, 2002.

Y. Ding, Y. E. Frazho, A. Caverlee, and J. , PageRank for ranking authors in co citation networks, Journal of the Association for Information Science and Technology, vol.60, pp.2229-2243, 2009.

F. Radicchi, S. Fortunato, B. Markines, and A. Vespignani, Diffusion of scientific credits and the ranking of scientists, Physical Review E, vol.80, p.56103, 2009.

Y. B. Zhou, L. Lü, and M. Li, Quantifying the influence of scientists and their publications: distinguishing between prestige and popularity, New Journal of Physics, vol.14, p.33033, 2012.

L. Lü, M. Medo, C. H. Yeung, Y. C. Zhang, Z. K. Zhang et al., Recommender systems, Physics Reports, vol.519, pp.1-49, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01306790

M. Trusov, R. E. Bucklin, and K. Pauwels, Effects of word-of-mouth versus traditional marketing: findings from an internet social networking site, Journal of marketing, vol.73, pp.90-102, 2009.

P. Domingos and M. Richardson, Mining the network value of customers, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, 2001.

L. Lü, D. Chen, X. L. Ren, Q. M. Zhang, Y. C. Zhang et al., Vital nodes identification in complex networks, Physics Reports, vol.650, pp.1-63, 2016.

M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik et al., Identification of influential spreaders in complex networks, Nature physics, vol.6, pp.888-893, 2010.

L. Lü, Y. C. Zhang, C. H. Yeung, and T. Zhou, Leaders in social networks, the delicious case, PloS one, vol.6, p.21202, 2011.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Vanbriesen et al., Cost-effective outbreak detection in networks, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 2007.

W. Chen, Y. Wang, and S. Yang, Efficient influence maximization in social networks, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.199-208

Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si et al., Simulated Annealing Based Influence Maximization in, Social Networks. AAAI, vol.11, pp.127-132

K. Jung, W. Heo, and W. Chen, Irie: Scalable and robust influence maximization in social networks, IEEE 12th International Conference on, pp.918-923, 2012.

N. Ohsaka, T. Akiba, Y. Yoshida, and K. I. Kawarabayashi, Fast and Accurate Influence Maximization on Large Networks with Pruned Monte-Carlo Simulations, pp.138-144

Y. Tang, X. Xiao, and Y. Shi, Influence maximization: Near-optimal time complexity meets practical efficiency, Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pp.75-86

C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, Maximizing social influence in nearly optimal time, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.946-957

Y. Tang, Y. Shi, and X. Xiao, Influence maximization in near-linear time: A martingale approach, Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 2015.

D. Williams, Probability with martingales, 1991.

E. Cohen, Size-Estimation Framework with Applications to Transitive Closure and Reachability, Journal of Computer and System Sciences, vol.55, issue.3, pp.441-453, 1997.

A. Goyal, F. Bonchi, and L. V. Lakshmanan, A data-based approach to social influence maximization. Proceedings of the VLDB Endowment, vol.5, pp.73-84, 2011.

J. Leskovec, A. Krevl, and . Snap-datasets,

A. Goyal, F. Bonchi, and L. V. Lakshmanan, Learning Influence Probabilities in Social Networks, Proceedings of the third ACM international conference on Web search and data mining, pp.241-250

S. John, , 2017.

P. Boldi and S. Vigna, Axioms for centrality, Internet Mathematics, vol.10, pp.222-262, 2014.

C. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.