A. Benabid, P. Pollak, C. Gervason, D. Hoffmann, D. Gao et al., Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus, The Lancet, vol.337, pp.403-406, 1991.

C. Byrnes and A. Isidori, A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control, CDC84, pp.1569-1573, 1984.

R. Carron, A. Chaillet, A. Filipchuk, W. Pasillas-lépine, and C. Hammond, Closing the Loop of Deep Brain Stimulation. Frontiers in Systems Neuroscience, vol.13, pp.1-18, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01264998

A. Chaillet, G. Detorakis, S. Palfi, and S. Senova, Robust stabilization of delayed neural fields with partial measurement and actuation, Automatica, vol.83, pp.262-274, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522308

G. Detorakis, A. Chaillet, S. Palfi, and S. Senova, Closed-loop stimulation of a delayed neural fields model of parkinsonian STNGPe network: a theoretical and computational study, Frontiers in Neuroscience, vol.9, issue.237, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251739

R. Driver, Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal, vol.10, issue.1, pp.401-426, 1962.

I. Haidar, W. Pasillas-lépine, A. Chaillet, E. Panteley, S. Palfi et al., A firing-rate regulation strategy for closed-loop deep brain stimulation, Biological Cybernetics, vol.110, issue.1, pp.55-71, 2016.

J. Hale, Theory of functional differential equations, 1977.

C. Hammond, H. Bergman, and P. Brown, Pathological synchronization in Parkinson's disease: networks, models and treatments, Trends in Neurosciences, vol.30, issue.7, pp.357-364, 2007.

A. Ilchmann and H. Logemann, Adaptive ?-tracking for a class of infinite-dimensional systems, Systems Control Lett, vol.34, pp.11-21, 1998.

A. Ilchmann and E. Ryan, Universal ?-tracking for non-linearlyperturbed systems in the presence of noise, Automatica, vol.30, pp.337-346, 1994.

P. A. Ioannou and P. V. Kokotovic, Instability analysis and improvement of robustness of adaptive control, Automatica, vol.20, pp.583-594, 1984.

H. Kankanamalage, Y. Lin, and Y. Wang, On Lyapunov-Krasovskii Characterizations of Input-to-Output Stability, Proceedings of the IFAC World Congress, pp.1-6, 2017.

I. Karafyllis, The non-uniform in time small-gain theorem for a wide class of control systems with outputs, European Journal of Control, vol.10, issue.4, pp.307-323, 2004.

I. Karafyllis, P. Pepe, and Z. Jiang, Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations, European Journal of Control, vol.14, issue.6, pp.516-536, 2008.

I. Karafyllis, P. Pepe, and Z. Jiang, Input-to-Output Stability for systems described by retarded functional differential equations, European Journal of Control, vol.14, issue.6, pp.539-555, 2008.

V. Lakshmikantham and X. Z. Liu, Stability analysis in terms of two measures, 1993.

I. Mareels, A simple selftuning controller for stably invertible systems, Systems & Control Letters, vol.4, issue.1, pp.5-16, 1984.

A. Nevado-holgado, J. Terry, and R. Bogacz, Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, Journal of Neuroscience, vol.30, pp.12340-12352, 2010.

R. Ortega and Y. Tang, Robustness of adaptive controllers-A survey, Automatica, vol.25, pp.651-677, 1989.

P. Pepe, On Liapunov-Krasovskii functionals under Carathéodory conditions, Automatica, vol.43, issue.4, pp.701-706, 2007.

E. Sontag and Y. Wang, Notions of input-to-output stability, Systems & Control Letters, vol.38, pp.235-248, 1999.

A. R. Teel and L. Praly, A smooth Lyapunov function from a classKL estimate involving two positive semidefinite functions, ESAIM Control Optim. Calc. Var, vol.5, pp.313-367, 2000.

V. I. Vorotnikov, Partial stability and control, 1998.

N. Yeganefar, P. Pepe, and M. Dambrine, Input-to-state stability of time-delay systems: a link with exponential stability, IEEE Trans. Automat. Control, vol.53, issue.6, pp.1526-1531, 2008.