L. A. Adamic and N. Glance, The political blogosphere and the 2004 u.s. election: Divided they blog, pp.36-43, 2005.

M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, In: NIPS, pp.585-591, 2002.

Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell, vol.35, issue.8, pp.1798-1828, 2013.

B. J. Breitkreutz, C. Stark, T. Reguly, and L. Boucher, The biogrid interaction database, Nucleic acids research, 2008.

S. Cao, W. Lu, and Q. Xu, Grarep: Learning graph representations with global structural information. In: CIKM, pp.891-900, 2015.

S. Cao, W. Lu, and Q. Xu, Deep neural networks for learning graph representations. In: AAAI, pp.1145-1152, 2016.

S. Chang, W. Han, J. Tang, G. J. Qi, C. C. Aggarwal et al., Heterogeneous network embedding via deep architectures, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '15, pp.119-128, 2015.

L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang, Dynamic network embedding : An extended approach for skip-gram based network embedding, Proceedings of the TwentySeventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp.2086-2092, 2018.

R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, Liblinear: A library for large linear classification, J. Mach. Learn. Res, vol.9, pp.1871-1874, 2008.

H. Gao and H. Huang, Deep attributed network embedding, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp.3364-3370, 2018.

P. Goyal and E. Ferrara, Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems, pp.2086-2092, 2018.

A. Grover and J. Leskovec, Node2vec: Scalable feature learning for networks, pp.855-864, 2016.

W. L. Hamilton, R. Ying, and J. Leskovec, Representation learning on graphs: Methods and applications, IEEE Data Engineering Bulletin, vol.40, issue.3, 2017.

J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection, 2014.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, In: NIPS, pp.3111-3119, 2013.

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, Asymmetric transitivity preserving graph embedding, pp.1105-1114, 2016.

B. Perozzi, R. Al-rfou, and S. Skiena, Deepwalk: Online learning of social representations, pp.701-710, 2014.

M. Richardson, R. Agrawal, and P. Domingos, Trust management for the semantic web, pp.351-368, 2003.

S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, SCIENCE, vol.290, pp.2323-2326, 2000.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan et al., Line: Large-scale information network embedding, pp.1067-1077, 2015.

L. Tang and H. Liu, Relational learning via latent social dimensions, pp.817-826, 2009.

J. B. Tenenbaum, V. D. Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.

C. Tu, W. Zhang, Z. Liu, and M. Sun, Max-margin deepwalk: Discriminative learning of network representation, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. IJCAI'16, pp.3889-3895, 2016.

D. Wang, P. Cui, and W. Zhu, Structural deep network embedding, In: KDD, pp.1225-1234, 2016.

X. Wang and G. Sukthankar, Multi-label relational neighbor classification using social context features, In: KDD, pp.464-472, 2013.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, Network representation learning with rich text information, Proceedings of the 24th International Conference on Artificial Intelligence. IJCAI'15, pp.2111-2117, 2015.

Z. Yang, W. W. Cohen, and R. Salakhutdinov, Revisiting semisupervised learning with graph embeddings, Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol.48, pp.40-48, 2016.

Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu et al., Anrl: Attributed network representation learning via deep neural networks, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp.3155-3161, 2018.