S. Gabriel, R. Lau, and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol, vol.41, pp.2251-2270, 1996.

M. Lazebnik, D. Popovic, L. Mccartney, C. B. Watkins, M. J. Lindstrom et al., A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries, Phys. Med. Biol, vol.52, pp.6093-6115, 2007.

S. Y. Semenov and D. R. Corfield, Microwave tomography for brain imaging: Feasibility assessment for stroke detection, Int. J. Antennas Propag, 2008.

P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, A clinical prototype for active microwave imaging of the breast, IEEE Trans. Microw. Theory Tech, vol.48, pp.1841-1853, 2000.

M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, D. R. Gibbins et al., Clinical trials of a UWB imaging radar for breast cancer, Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP), pp.12-16, 2010.

E. C. Fear, J. Bourqui, C. Curtis, D. Mew, B. Docktor et al., Microwave breast imaging with a monostatic radar-based system: A study of application to patients, IEEE Trans. Microw. Theory Tech, vol.61, pp.2119-2128, 2013.

E. Porter, M. Coates, and M. Popovi´cpopovi´c, An early clinical study of time-domain microwave radar for breast health monitoring, IEEE Trans. Biomed. Eng, vol.63, pp.530-539, 2016.

A. Fasoula, L. Duchesne, J. D. Cano, P. Lawrence, G. Robin et al., On-site validation of a microwave breast imaging system, before first patient study, Diagnostics, vol.8, p.53, 2018.

D. O'loughlin, M. J. ;-o'halloran, B. M. Moloney, M. Glavin, E. Jones et al., Microwave Breast Imaging: Clinical Advances and Remaining Challenges, IEEE Trans. Biomed. Eng, vol.65, 2018.

M. Persson, A. Fhager, H. D. Trefná, Y. Yu, T. Mckelvey et al., Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible, IEEE Trans. Biomed. Eng, vol.61, pp.2806-2817, 2014.

A. T. Mobashsher, K. S. Bialkowski, A. M. Abbosh, and S. Crozier, Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection, PLoS ONE, 2016.

M. Hopfer, R. Planas, A. Hamidipour, T. Henriksson, and S. Semenov, Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke: A virtual data and human head phantom study, IEEE Antennas Propag. Mag, vol.59, pp.86-97, 2017.

R. Scapaticci, . ;-tobon, J. A. Vasquez, G. Bellizzi, F. Vipiana et al., Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring, IEEE Trans. Antennas Propag, 2018.

A. T. Mobashsher and A. M. Abbosh, Artificial human phantoms: Human proxy in testing microwave apparatus that have electromagnetic interaction with the human body, IEEE Microw. Mag, vol.16, pp.42-62, 2015.

M. Lazebnik, E. L. Madsen, G. R. Frank, and S. C. Hagness, Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications, Phys. Med. Biol, vol.50, pp.4245-4258, 2005.

A. Mashal, F. Gao, and S. C. Hagness, Heterogeneous anthropomorphic phantoms with realistic dielectric properties for microwave breast imaging experiments, Microw. Opt. Technol. Lett, vol.53, pp.1896-1902, 2011.

A. Bakar, A. Abbosh, A. Bialkowski, and M. , Fabrication and characterization of a heterogeneous breast phantom for testing an ultrawideband microwave imaging system, Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC), pp.1414-1417, 2011.

C. Hahn and S. Noghanian, Heterogeneous breast phantom development for microwave imaging using regression models, Int. J. Biomed. Imaging, vol.6, 2012.

B. J. Mohammed and A. M. Abbosh, Realistic head phantom to test microwave systems for brain imaging, Microw. Opt. Technol. Lett, vol.56, pp.979-9824, 2014.

M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece et al., Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms, IEEE Antennas Wirel. Propag. Lett, vol.8, pp.1349-1352, 2009.

E. Porter, J. Fakhoury, R. Oprisor, M. Coates, and M. Popovi´cpopovi´c, Improved tissue phantoms for experimental validation of microwave breast cancer detection, Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP), pp.1-5, 2010.

N. Joachimowicz, C. Conessa, T. Henriksson, and B. Duchêne, Breast phantoms for microwave imaging, IEEE Antennas Wirel. Propag. Lett, vol.13, pp.1333-1336, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103476

B. Mcdermott, E. Porter, A. Santorelli, B. Divilly, L. Morris et al., Anatomically and Dielectrically Realistic Microwave Head Phantom with Circulation and Reconfigurable Lesions, Prog. Electromagn. Res, vol.78, pp.47-60, 2017.

S. Romeo, L. Di-donato, O. M. Bucci, I. Catapano, L. Crocco et al., Dielectric characterization study of liquid-based materials for mimicking breast tissues, Microw. Opt. Tech. Lett, vol.53, pp.1276-1280, 2011.

M. J. Burfeindt, T. J. Colgan, R. O. Mays, J. D. Shea, N. Behdad et al., MRI-derived 3-D-printed breast phantom for microwave breast imaging validation, IEEE Antennas Wirel. Propag. Lett, vol.11, pp.1610-1613, 2012.

P. T. Nguyen, A. M. Abbosh, and S. Crozier, Thermo-dielectric breast phantom for experimental studies of microwave hyperthermia, IEEE Antennas Wirel. Propag. Lett, vol.15, pp.476-479, 2016.

M. O'halloran, S. Lohfeld, G. Ruvio, J. Browne, F. Krewer et al., Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications, Radar Sensor Technology XVIII; International Society for Optics and Photonics, 2014.

A. T. Mobashsher and A. M. Abbosh, Three-dimensional human head phantom with realistic electrical properties and anatomy, IEEE Antennas Wirel. Propag. Lett, vol.13, pp.1401-1404, 2014.

B. Faenger, S. Ley, M. Helbig, J. Sachs, and I. Hilger, Breast phantom with a conductive skin layer and conductive 3D-printed anatomical structures for microwave imaging, Proceedings of the 11th European Conference on Antennas and Propagation (EuCAP), pp.1065-1068, 2017.

R. Herrera, D. Reimer, T. Solis-nepote, M. Pistorius, and S. , Manufacture and testing of anthropomorphic 3D-printed breast phantoms using a microwave radar algorithm optimized for propagation speed, Proceedings of the 11th European Conference on Antennas and Propagation (EuCAP), pp.3480-3484, 2017.

A. Fasoula, J. Bernard, G. Robin, and L. Duchesne, Elaborated breast phantoms and experimental benchmarking of a microwave breast imaging system before first clinical study, Proceedings of the 12th European Conference on Antennas and Propagation, pp.9-13, 2018.

N. N. Graedel, J. R. Polimeni, B. Guerin, B. Gagoski, and L. L. Wald, An anatomically realistic temperature phantom for radiofrequency heating measurements, Magn. Reson. Med, vol.73, pp.442-450, 2015.

T. Rydholm, A. Fhager, M. Persson, and P. M. Meaney, A first evaluation of the realistic Supelec-breast phantom, IEEE J. Electromagn. RF Microw. Med. Biol, vol.1, pp.59-65, 2017.

M. Koutsoupidou, I. S. Karanasiou, C. G. Kakoyiannis, E. Groumpas, C. Conessa et al., Evaluation of a tumor detection microwave system with a realistic breast phantom, Microw. Opt. Technol. Lett, vol.59, pp.6-10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01459844

T. Vasquez, J. A. Vipiana, F. Casu, M. R. Vacca, M. Sarwar et al., Experimental assessment of qualitative microwave imaging using a 3-D realistic breast phantom, Proceedings of the 11th European Conference on Antennas and Propagation (EuCAP), pp.2728-2731, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01587646

M. R. Casu, M. Vacca, . ;-tobon, J. A. Vasquez, A. Pulimeno et al., A COTS-based microwave imaging system for breast-cancer detection, IEEE Trans. Biomed. Circuits Syst, vol.11, pp.804-814, 2017.

T. Rydholm, A. Fhager, M. Persson, S. Geimer, and P. Meaney, Effects of the plastic of the realistic GeePS-L2S breast phantom, vol.8, p.61, 2018.

N. Joachimowicz, B. Duchêne, . ;-tobon, J. A. Vasquez, G. Turvani et al., Head phantoms for a microwave imaging system dedicated to cerebrovascular disease monitoring, Proceedings of the IEEE International Conference on Antenna Measurements and Applications, pp.3-6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01872730

J. Garrett and E. Fear, Stable and flexible materials to mimic the dielectric properties of human soft tissues, IEEE Antennas Wirel. Propag. Lett, vol.13, pp.599-602, 2014.

J. Garrett and E. Fear, A new breast phantom with a durable skin layer for microwave breast imaging, IEEE Trans. Antennas Propag, vol.63, pp.1693-1700, 2015.

G. Govinda-raju, Dielectric constant of binary mixtures of liquids, Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, pp.357-363, 1988.

M. Lazebnik, M. Okoniewski, J. H. Booske, and S. C. Hagness, Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies, IEEE Microw. Wirel. Comp. Lett, vol.17, pp.822-824, 2007.

S. Gabriel, R. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol, vol.41, pp.2271-2293, 1996.

D. Andreuccetti, R. Fossi, and C. Petrucci, Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz-100 GHz, p.17, 2018.

A. Stogryn, Equations for calculating the dielectric constant of saline water, IEEE Trans. Microw. Theory Tech, vol.19, pp.733-736, 1971.

E. Walter, Numerical Methods and Optimization: A Consumer Guide, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01277196

N. Joachimowicz, B. Duchêne, C. Conessa, and O. Meyer, Easy-to-produce adjustable realistic breast phantoms for microwave imaging, Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), pp.2892-2895, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01459682

N. E. Belhadj-tahar, Fourrier-Lamer, A. Broad-band analysis of a coaxial discontinuity used for dielectric measurements, IEEE Trans. Microw. Theory Tech, vol.34, pp.346-350, 1986.

R. Scapaticci, L. Di-donato, I. Catapano, and L. Crocco, A Feasibility Study on Microwave Imaging for Brain Stroke Monitoring, Prog. Electromagn. Res. B, vol.40, pp.305-324, 2012.

M. Bjelogrlic, M. Volery, B. Fuchs, J. P. Thiran, J. R. Mosig et al., Stratified spherical model for microwave imaging of the brain: Analysis and experimental validation of transmitted power, Microw. Opt. Technol. Lett, vol.60, pp.1042-1048, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01739926