A. Adiga and A. K. Vullikanti, How robust is the core of a network?, Machine Learning and Knowledge Discovery in Databases, pp.541-556, 2013.

, Social Network Data Analytics, 2011.

C. C. Aggarwal and H. Wang, Managing and Mining Graph Data, 2010.

E. Akbas and P. Zhao, Truss-based community search: A truss-equivalence based indexing approach, Proceedings of the VLDB Endowment, vol.10, pp.1298-1309, 2017.

M. A. Al-garadi, K. D. Varathan, and S. D. Ravana, Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method, Physica A: Statistical Mechanics and its Applications, vol.468, pp.278-288, 2017.

J. Alvarez-hamelin, L. Dall'asta, A. Barrat, and A. Vespignani, K-core decomposition: A tool for the visualization of large scale networks, Adv. Neural Inf. Process. Syst, vol.18, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004807

J. I. Alvarez-hamelin, A. Barrat, and A. Vespignani, Large scale networks fingerprinting and visualization using the k-core decomposition, NIPS '06: Advances in Neural Information Processing Systems, pp.41-50, 2006.

J. I. Alvarez-hamelin, L. Dall'asta, A. Barrat, and A. Vespignani, k-core decomposition: a tool for the analysis of large scale internet graphs, 2005.

J. I. Alvarez-hamelin, L. Dall'asta, A. Barrat, and A. Vespignani, k-core decomposition of internet graphs: Hierarchies, self-similarity and measurement biases, NHM, vol.3, issue.2, p.371, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00012974

R. Andersen and K. Chellapilla, Finding dense subgraphs with size bounds, WAW, pp.25-37, 2009.

D. Angluin and J. Chen, Learning a hidden graph using o( logn) queries per edge, J. Comput. Syst. Sci, vol.74, issue.4, pp.546-556, 2008.

S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis, Distributed k-core decomposition and maintenance in large dynamic graphs, Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems, DEBS '16, pp.161-168, 2016.

J. Bang-jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications, 2008.

M. Bastian, S. Heymann, and M. Jacomy, Gephi: an open source software for exploring and manipulating networks, Icwsm, vol.8, pp.361-362, 2009.

V. Batagelj, A. Mrvar, and M. Zaver?nik, Partitioning approach to visualization of large graphs, International Symposium on Graph Drawing, pp.90-97, 1999.

V. Batagelj and M. Zaversnik, , 2002.

V. Batagelj and M. Zaversnik, An o(m) algorithm for cores decomposition of networks, 2003.

A. R. Benson, D. F. Gleich, and J. Leskovec, Higher-order organization of complex networks, vol.353, pp.163-166, 2016.

K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma, Preventing unraveling in social networks: the anchored k-core problem, ICALP '11: Proceedings of the 39th International Colloquium Conference on Automata, Languages, and Programming, pp.440-451, 2011.

M. Bola and B. Sabel, Dynamic reorganization of brain functional networks during cognition, NeuroImage, vol.114, 2015.

P. Boldi and S. Vigna, The webgraph framework i: Compression techniques, Proceedings of the 13th International Conference on World Wide Web, WWW '04, pp.595-602, 2004.

F. Bonchi, F. Gullo, and A. Kaltenbrunner, Core Decomposition of Massive, Information-Rich Graphs, pp.1-11, 2017.

F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, Core decomposition of uncertain graphs, KDD, pp.1316-1325, 2014.

U. Brandes, Social network analysis and visualization [applications corner, IEEE Signal Processing Magazine, vol.25, issue.6, 2008.

S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, Proceedings of the Seventh International Conference on World Wide Web 7, WWW7, pp.107-117, 1998.

P. Brown and J. Feng, Measuring user influence on twitter using modified k-shell decomposition, The Social Mobile Web, volume WS-11-02 of AAAI Workshops. AAAI, 2011.

S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, A model of internet topology using k-shell decomposition, vol.104, pp.11150-11154, 2007.

L. Chang and L. Qin, Cohesive Subgraph Computation over Large Sparse Graphs, 2018.

Q. Chang and L. , Minimum Degree-Based Core Decomposition, Springer Series in the Data Sciences, pp.21-39

J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu, Efficient core decomposition in massive networks, ICDE, pp.51-62, 2011.

S. Cheng, Y. Chen, and M. Tsai, Using k-core decomposition to find cluster centers for kmeans algorithm in graphx on spark, he Eighth International Conference on Cloud Computing, GRIDs, and Virtualization, pp.93-98, 2017.

J. Cohen, Trusses: Cohesive subgraphs for social network analysis, 2008.

P. Colomer-de-simón, M. A. Serrano, M. G. Beiró, J. I. Alvarez-hamelin, and M. Boguná, Deciphering the global organization of clustering in real complex networks, Scientific reports, vol.3, p.2517, 2013.

D. J. Cook and L. B. Holder, Mining Graph Data, 2006.

W. Cui, Y. Xiao, H. Wang, and W. Wang, Local search of communities in large graphs, SIGMOD, pp.991-1002, 2014.

M. Danisch, T. H. Chan, and M. Sozio, Large scale density-friendly graph decomposition via convex programming, Proceedings of the 26th International Conference on World Wide Web, WWW '17, pp.233-242, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01699048

J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters, Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation, vol.6, pp.10-10, 2004.

S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, k-core organization of complex networks, Physical Review Letters, vol.96, p.40601, 2006.

M. Eidsaa, Core Decomposition Analysis of Weighted Biological Networks, 2016.

M. Eidsaa and E. Almaas, s-core network decomposition: A generalization of k-core analysis to weighted networks, Phys. Rev. E, vol.88, p.62819, 2013.

A. I. Emerson, S. Andrews, I. Ahmed, T. K. Azis, and J. A. Malek, K-core decomposition of a protein domain co-occurrence network reveals lower cancer mutation rates for interior cores, Journal of Clinical Bioinformatics, vol.5, issue.1, p.1, 2015.

P. Erds and A. Hajnal, On chromatic number of graphs and set-systems, Acta Mathematica Academiae Scientiarum Hungarica, vol.17, issue.1-2, pp.61-99, 1966.

H. A. Filho, J. Machicao, and O. M. Bruno, A hierarchical model of metabolic machinery based on the kcore decomposition of plant metabolic networks, PLOS ONE, vol.13, issue.5, pp.1-15, 2018.

L. C. Freeman, A set of measures of centrality based on betweenness, Sociometry, vol.40, issue.1, pp.35-41, 1977.

E. C. Freuder, A sufficient condition for backtrack-free search, J. ACM, vol.29, issue.1, pp.24-32, 1982.

E. Galimberti, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo, Mining (maximal) span-cores from temporal networks, Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp.107-116, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01863956

E. Galimberti, F. Bonchi, and F. Gullo, Core decomposition and densest subgraph in multilayer networks, Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM '17, pp.1807-1816, 2017.

A. Garas, F. Schweitzer, and S. Havlin, A k-shell decomposition method for weighted networks, New Journal of Physics, vol.14, issue.8, 2012.

D. Garcia, P. Mavrodiev, and F. Schweitzer, Social resilience in online communities: The autopsy of friendster, COSN '13: Proceedings of the First ACM Conference on Online Social Networks, pp.39-50, 2013.

J. Garcia-algarra, J. Pastor, M. L. Mouronte, and J. Galeano, A structural approach to disentangle the visualization of bipartite biological networks, Complexity, vol.02, pp.1-11, 2018.

J. Garcia-algarra, J. M. Pastor, M. L. Mouronte, and J. Galeano, Bipartgraph: An interactive application to plot bipartite ecological networks, 2017.

J. Garca-algarra, J. Pastor, J. Iriondo, and J. Galeano, Ranking of critical species to preserve the functionality of mutualistic networks using the k-core decomposition, PeerJ, vol.5, issue.e3321, 2017.

C. Giatsidis, K. Berberich, D. M. Thilikos, and M. Vazirgiannis, Visual exploration of collaboration networks based on graph degeneracy, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.1512-1515, 2012.

C. Giatsidis, B. Cautis, S. Maniu, D. M. Thilikos, and M. Vazirgiannis, Quantifying trust dynamics in signed graphs, the s-cores approach, Proceedings of the 2014 SIAM International Conference on Data Mining, pp.668-676, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01083529

C. Giatsidis, B. Cautis, S. Maniu, D. M. Thilikos, and M. Vazirgiannis, Quantifying trust dynamics in signed graphs, the s-cores approach, SDM, pp.668-676, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01083529

C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis, Corecluster: A degeneracy based graph clustering framework, AAAI '14: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp.44-50, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01083536

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, D-cores: Measuring collaboration of directed graphs based on degeneracy, ICDM '11: Proceedings of the 11th IEEE International Conference on Data Mining, pp.201-210, 2011.
URL : https://hal.archives-ouvertes.fr/lirmm-00846768

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, Evaluating cooperation in communities with the k-core structure, ASONAM '11: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, pp.87-93, 2011.

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, D-cores: measuring collaboration of directed graphs based on degeneracy, Knowl. Inf. Syst, vol.35, issue.2, pp.311-343, 2013.
URL : https://hal.archives-ouvertes.fr/lirmm-00846768

P. Govindan, S. Soundarajan, T. Eliassi-rad, and C. Faloutsos, Nimblecore: A space-efficient external memory algorithm for estimating core numbers, ASONAM, pp.207-214, 2016.

P. Govindan, C. Wang, C. Xu, H. Duan, and S. Soundarajan, The k-peak decomposition: Mapping the global structure of graphs, Proceedings of the 26th International Conference on World Wide Web, WWW '17, pp.1441-1450, 2017.

P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey et al., Mapping the structural core of human cerebral cortex, PLOS Biology, vol.6, issue.7, p.159, 2008.

X. He, H. Zhao, W. Cai, G. Li, and F. Pei, Analyzing the structure of earthquake network by k-core decomposition, Physica A: Statistical Mechanics and its Applications, vol.421, pp.34-43, 2015.

J. Healy, J. Janssen, E. Milios, and W. Aiello, Characterization of graphs using degree cores, WAW '08: Algorithms and Models for the Web-Graph, pp.137-148, 2008.

L. Hébert-dufresne, A. Allard, J. Young, and L. J. Dubé, Percolation on random networks with arbitrary k-core structure, vol.88, p.62820, 2013.

X. Hu, F. Liu, V. Srinivasan, and A. Thomo, k-core decomposition on giraph and graphchi, Advances in Intelligent Networking and Collaborative Systems, pp.274-284, 2018.

X. Huang, W. Lu, and L. V. Lakshmanan, Truss decomposition of probabilistic graphs: Semantics and algorithms, Proceedings of the 2016 International Conference on Management of Data, SIGMOD '16, pp.77-90, 2016.

A. E. Isaac and S. Sinha, Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues, Journal of Biosciences, vol.40, issue.4, pp.683-699, 2015.

H. Kabir and K. Madduri, Parallel k-core decomposition on multicore platforms, IPDPS Workshops, pp.1482-1491, 2017.

V. Kassiano, A. Gounaris, A. N. Papadopoulos, and K. Tsichlas, Mining uncertain graphs: An overview, Algorithmic Aspects of Cloud Computing, pp.87-116, 2017.

D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the spread of influence through a social network, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '03, pp.137-146, 2003.

W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo, K-core decomposition of large networks on a single PC, PVLDB, vol.9, issue.1, pp.13-23, 2015.

L. M. Kirousis and D. M. Thilikos, The linkage of a graph, SIAM J. Comput, vol.25, issue.3, pp.626-647, 1996.

M. Kitsak, L. K. Gallos, S. Havlin, F. Liljerosand, L. Muchnik et al., Identification of influential spreaders in complex networks, Nature Physics, 2010.

R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins et al., The web as a graph, PODS, 2000.

J. Kunegis, A. Lommatzsch, and C. Bauckhage, The slashdot zoo: Mining a social network with negative edges, Proceedings of the 18th International Conference on World Wide Web, WWW '09, pp.741-750, 2009.

J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. Luca et al., Spectral analysis of signed graphs for clustering, prediction and visualization, SDM, pp.559-570, 2010.

A. Kyrola, G. Blelloch, and C. Guestrin, Graphchi: Large-scale graph computation on just a pc, Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, OSDI'12, pp.31-46, 2012.

L. L?, Vital nodes identification in complex networks, Physics Reports, vol.650, pp.1-63, 2016.

N. Lahav, B. Ksherim, E. Ben-simon, A. Maron-katz, R. Cohen et al., K-shell decomposition reveals hierarchical cortical organization of the human brain, New Journal of Physics, vol.18, issue.8, p.83013, 2016.

S. Lahiri, S. R. Choudhury, and C. Caragea, Keyword and keyphrase extraction using centrality measures on collocation networks, 2014.

J. Leskovec and E. Horvitz, Planetary-scale views on a large instant-messaging network, WWW '08: Proceedings of the 17th International Conference on World Wide Web, pp.915-924, 2008.

J. Leskovec, D. Huttenlocher, and J. Kleinberg, Signed networks in social media, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '10, pp.1361-1370, 2010.

J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection, 2014.

M. Li, W. Zhou, and L. Gao, S-kcore: A social-aware kcore decomposition algorithm in pocket switched networks, 2010 IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing (EUC 2010)(EUC), vol.00, p.2010

R. Li, L. Qin, J. X. Yu, and R. Mao, Influential community search in large networks, Proceedings of the VLDB Endowment, vol.8, pp.509-520, 2015.

R. Li, J. X. Yu, and R. Mao, Efficient core maintenance in large dynamic graphs, IEEE Transactions on Knowledge and Data Engineering, vol.26, issue.10, pp.2453-2465, 2014.

D. R. Lick and A. T. , White. k-degenerate graphs, Canadian Journal of Mathematics, vol.22, pp.1082-1096, 1970.

J. Lin, Q. Guo, W. Dong, L. Tang, and J. Liu, Identifying the node spreading influence with largest k-core values, Physics Letters A, vol.378, issue.45, pp.3279-3284, 2014.

M. Litvak and M. Last, Graph-based keyword extraction for single-document summarization, Proceedings of the workshop on Multi-source Multilingual Information Extraction and Summarization, pp.17-24, 2008.

L. Lü, T. Zhou, Q. Zhang, and H. E. Stanley, The h-index of a network node and its relation to degree and coreness, Nature Communications, vol.7, p.10168, 2016.

F. Luo, B. Li, X. Wan, and R. H. Scheuermann, Core and periphery structures in protein interaction networks, BMC Bioinformatics, vol.10, p.8, 2009.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn et al., Pregel: A system for large-scale graph processing, Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD '10, pp.135-146, 2010.

F. D. Malliaros, A. N. Papadopoulos, and M. Vazirgiannis, Core decomposition in graphs: Concepts, algorithms and applications, EDBT, pp.720-721, 2016.

F. D. Malliaros, M. G. Rossi, and M. Vazirgiannis, Locating influential nodes in complex networks, Scientific reports, vol.6, p.19307, 2016.

F. D. Malliaros and M. Vazirgiannis, To stay or not to stay: modeling engagement dynamics in social graphs, 22nd ACM International Conference on Information and Knowledge Management, CIKM'13, pp.469-478, 2013.

F. D. Malliaros and M. Vazirgiannis, Vulnerability assessment in social networks under cascade-based node departures, Europhysics Letters), vol.110, issue.6, p.68006, 2015.

A. Mandal and M. A. Hasan, A distributed k-core decomposition algorithm on spark, Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), BIG DATA '17, pp.976-981, 2017.

C. Z. Marshak, Applications of Network Science to Criminal Networks, University Education, and Ecology, 2017.

D. W. Matula and L. L. Beck, Smallest-last ordering and clustering and graph coloring algorithms, J. ACM, vol.30, issue.3, pp.417-427, 1983.

P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and M. Vazirgiannis, Degeneracy-based real-time sub-event detection in twitter stream, ICWSM, pp.248-257, 2015.

P. Meladianos, A. Tixier, I. Nikolentzos, and M. Vazirgiannis, Real-time keyword extraction from conversations, Proceedings of the 15th Conference of the European Chapter, vol.2, pp.462-467, 2017.

P. Meyer, H. Siy, and S. Bhowmick, Identifying important classes of large software systems through k-core decomposition, Advances in Complex Systems, vol.17, p.1550004, 2015.

R. Mihalcea and P. Tarau, Textrank: Bringing order into text, Proceedings of the 2004 conference on empirical methods in natural language processing, 2004.

A. Montresor, F. D. Pellegrini, and D. Miorandi, Distributed k-core decomposition, PODC, pp.207-208, 2011.

A. Montresor, F. D. Pellegrini, and D. Miorandi, Distributed k-core decomposition, IEEE Transactions on Parallel and Distributed Systems, vol.24, issue.2, pp.288-300, 2013.

F. Morone, G. Ferraro, and H. A. Makse, The k-core as a predictor of structural collapse in mutualistic ecosystems, Nature Physics, vol.10, 2018.

G. Nikolentzos, P. Meladianos, S. Limnios, and M. Vazirgiannis, A degeneracy framework for graph similarity, IJCAI, pp.2595-2601, 2018.

M. P. O'brien and B. D. Sullivan, Locally estimating core numbers, ICDM, pp.460-469, 2014.

P. Parchas, F. Gullo, D. Papadias, and F. Bonchi, The pursuit of a good possible world: Extracting representative instances of uncertain graphs, SIGMOD, pp.967-978, 2014.

P. Parchas, F. Gullo, D. Papadias, and F. Bonchi, Uncertain graph processing through representative instances, ACM Trans. Database Syst, vol.40, issue.3, 2015.

R. Pastor-satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical review letters, vol.86, issue.14, p.3200, 2001.

K. Pechlivanidou, D. Katsaros, and L. Tassiulas, Mapreduce-based distributed k-shell decomposition for online social networks, IEEE World Congress on Services, vol.0, pp.30-37, 2014.

S. Pei and H. A. Makse, Spreading dynamics in complex networks, Journal of Statistical Mechanics: Theory and Experiment, issue.12, p.12002, 2013.

S. Pei, L. Muchnik, J. S. Andrade, Z. Zheng, and H. A. Makse, Searching for superspreaders of information in real-world social media, Scientific reports, vol.4, p.5547, 2014.

M. Pellegrini, M. Baglioni, and F. Geraci, Protein complex prediction for large protein protein interaction networks with the core & peel method, BMC Bioinformatics, vol.17, issue.12, p.372, 2016.

Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, Efficient probabilistic k-core computation on uncertain graphs, 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp.1192-1203, 2018.

E. M. Phizicky and S. Fields, Protein-protein interactions: methods for detection and analysis. Microbiological reviews, vol.59, pp.94-123, 1995.

M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, K-nearest neighbors in uncertain graphs, Proceedings of the VLDB Endowment, pp.997-1008, 2010.

S. Qing, J. Liao, J. Wang, X. Zhu, and Q. Qi, Hybrid virtual network embedding with k-core decomposition and time-oriented priority, ICC, pp.2695-2699, 2012.

F. Rousseau and M. Vazirgiannis, Main core retention on graph-of-words for single-document keyword extraction, ECIR '15: Proceedings of the 37th European Conference on Information Retrieval, pp.382-393, 2015.

D. Samu, A. K. Seth, and T. Nowotny, Influence of wiring cost on the large-scale architecture of human cortical connectivity, PLOS Computational Biology, vol.10, issue.4, pp.1-24, 2014.

A. E. Sar?yüce, B. Gedik, G. Jacques-silva, K. Wu, and .. V. , Incremental k-core decomposition: algorithms and evaluation, The VLDB Journal, vol.25, issue.3, pp.425-447, 2016.

A. E. Saríyüce, B. Gedik, G. Jacques-silva, K. Wu, and U. V. , Streaming algorithms for k-core decomposition, Proceedings of the VLDB Endowment, vol.6, pp.433-444, 2013.

A. E. Sariyüce and A. Pinar, Peeling bipartite networks for dense subgraph discovery, Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM, pp.504-512, 2018.

A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V. Catalyurek, Finding the hierarchy of dense subgraphs using nucleus decompositions, Proceedings of the 24th International Conference on World Wide Web, WWW '15, pp.927-937, 2015.

S. Sarkar, A. Bhagwat, and A. Mukherjee, Core2vec: A core-preserving feature learning framework for networks, IEEE/ACM 2018 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2018, pp.487-490, 2018.

S. B. Seidman, Network Structure and Minimum Degree. Social Networks, vol.5, pp.269-287, 1983.

N. Shailaja-dasari, D. Ranjan, and M. Zubair, Park: An efficient algorithm for k-core decomposition on multicore processors, Proceedings-2014 IEEE International Conference on Big Data, pp.9-16, 2014.

M. Shanahan, V. Bingman, T. Shimizu, M. Wild, and O. Gntrkn, Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis, Frontiers in Computational Neuroscience, vol.7, p.89, 2013.

K. Shin, T. Eliassi-rad, and C. Faloutsos, Corescope: Graph mining using k-core analysis-patterns, anomalies and algorithms, ICDM, pp.469-478, 2016.

K. Shin, T. Eliassi-rad, and C. Faloutsos, Patterns and anomalies in k-cores of real-world graphs with applications, Knowl. Inf. Syst, vol.54, issue.3, pp.677-710, 2018.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The hadoop distributed file system, Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), MSST '10, pp.1-10, 2010.

P. Strouthopoulos and A. N. Papadopoulos, Core discovery in hidden graphs, CoRR, 2017.

Y. Tao, C. Sheng, and J. Li, Finding maximum degrees in hidden bipartite graphs, Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD '10, pp.891-902, 2010.

N. Tatti and A. Gionis, Density-friendly graph decomposition, WWW, pp.1089-1099, 2015.

J. B. Tenenbaum, V. D. Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, science, vol.290, issue.5500, pp.2319-2323, 2000.

A. Tixier, F. D. Malliaros, and M. Vazirgiannis, A graph degeneracy-based approach to keyword extraction, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.1860-1870, 2016.

A. Tixier, K. Skianis, and M. Vazirgiannis, Gowvis: a web application for graph-of-words-based text visualization and summarization, Proceedings of ACL-2016 System Demonstrations, pp.151-156, 2016.

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, Doulion: counting triangles in massive graphs with a coin, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.837-846, 2009.

J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, The anatomy of the facebook social graph, 2011.

E. Valari, M. Kontaki, and A. N. Papadopoulos, Discovery of top-k dense subgraphs in dynamic graph collections, Scientific and Statistical Database Management, pp.213-230, 2012.

M. P. Van-den-heuvel and O. Sporns, Rich-club organization of the human connectome, Journal of Neuroscience, vol.31, issue.44, pp.15775-15786, 2011.

T. Verma, F. Russmann, N. Arajo, J. Nagler, and H. Herrmann, Emergence of coreperipheries in networks, Nature Communications, vol.7, 2016.

U. and V. Luxburg, A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

J. Wang and J. Cheng, Truss decomposition in massive networks, Proceedings of the VLDB Endowment, vol.5, pp.812-823, 2012.

K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin, Efficient computing of radius-bounded k-cores, 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp.233-244, 2018.

N. Wang, D. Yu, H. Jin, C. Qian, X. Xie et al., Parallel algorithm for core maintenance in dynamic graphs, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), vol.00, pp.2366-2371, 2017.

T. White, Hadoop: The Definitive Guide, 2015.

C. I. Wood and I. V. Hicks, The minimal k-core problem for modeling k-assemblies, The Journal of Mathematical Neuroscience (JMN), vol.5, issue.1, p.14, 2015.

H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang et al., Core decomposition in large temporal graphs, BigData, pp.649-658, 2015.

D. Yan, J. Cheng, Y. Lu, and W. Ng, Blogel: A block-centric framework for distributed computation on real-world graphs, Proceedings of the VLDB Endowment, vol.7, pp.1981-1992, 2014.

M. L. Yiu, E. Lo, and J. Wang, Identifying the most connected vertices in hidden bipartite graphs using group testing, IEEE Transactions on Knowledge & Data Engineering, vol.25, p.2013

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust et al., Apache spark: A unified engine for big data processing, Commun. ACM, vol.59, issue.11, pp.56-65, 2016.

F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin, Olak: An efficient algorithm to prevent unraveling in social networks, Proceedings of the VLDB Endowment, vol.10, pp.649-660, 2017.

F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, Finding critical users for social network engagement: The collapsed k-core problem, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp.245-251, 2017.

F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, When engagement meets similarity: Efficient (k,r)-core computation on social networks, Proceedings of the VLDB Endowment, vol.10, pp.998-1009, 2017.

G. Zhang, G. Zhang, Q. Yang, S. Cheng, and T. Zhou, Evolution of the Internet and its cores, New Journal of Physics, vol.10, issue.12, p.123027, 2008.

Y. Zhang and S. Parthasarathy, Extracting analyzing and visualizing triangle k-core motifs within networks, ICDE '12: Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, pp.1049-1060, 2012.

R. Zhuo-ming, L. Jian-guo, S. Feng, H. Zhao-long, and G. Qiang, Analysis of the spreading influence of the nodes with minimum k-shell value in complex networks, Acta Physica Sinica, vol.62, issue.10, p.108902, 2013.

V. Zlati´czlati´c, D. Garlaschelli, and G. Caldarelli, Networks with arbitrary edge multiplicities, Europhysics Letters), vol.97, issue.2, p.28005, 2012.

Z. Zou and R. Zhu, Truss decomposition of uncertain graphs, Knowledge and Information Systems, vol.50, issue.1, pp.197-230, 2017.