Intermediate calculation steps from (7) to small perturbation
formulation

Starting from (7)
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the full Jacobian matrix with respect to the state of the system without any assumption

on the coupling and sustaining forces is:
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In the case of a MILO, for example, the coupling and sustaining forces only depend on ¢,

so that this reduces to
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Now, if we consider the MILO with 8 = 90°, at phase ¢ = 90°, we have
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so that the Jacobian becomes
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From (7), we also have the following relations:
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so that the Jacobian may be rewritten as:
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Regarding the Jacobian with respect to parametric fluctuations or additive noise
components, these are more straightforward to derive. For example, considering only
fluctuations of parameter € and additive noise components Ny, Nsiny, Neosx AN Neosy,)
as we do in most of our paper, we have:
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Note that only J; changes from one WCR architecture to the other (or from one steady

state solution to another).



How to use the Simulink simulation files

The provided files are:
“MILO_NL”. It simulates a MILO with & = 90°. The simulation is set to run with
the following parameters: Q = 100,y = 0.1, and F slowly varying from 1073 to
1072, Above
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the mode with ¢ = 90° becomes unstable, and the system starts oscillating with
¢ = -90°.

- “MOLO_NL". It simulates a MOLO with 8 = 90°, as considered in our paper. The
simulation is set to run with the following parameters: Q = 100,y = 0.1,k = 0.1

and F slowly varying from 1072 to 10~1. Above
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the phase opposition mode with R = 1 becomes unstable, and the system starts
oscillating with R # 1, but still in phase opposition. The coupling spring may be
nonlinear: setting the coupling force to “u+100*u”3” for example shows that
nonlinear coupling increases the effective coupling stiffness, and thus the range
of stability.

- “noisy_MILO". This is the simulation file used for generating the results in Fig. 7,
for a MILO with 8 = 45°. Note that the precise value of 8 is set by the transfer
functions in the “Phase-shift” block. In the case () is significantly different from 1
(this may be assessed by the formulas in the paper), one should modify these
transfer functions to 1/(1 +s/Q,). The values of Q, y and F are set by
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parameters “Q”, “gama” and “f”.



