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Nonlinear operation of resonant sensors based on weakly-coupled 
resonators: experimental validation 
Jérôme Juillard, Ali Mostafa, Pietro Maris Ferreira 

Abstract - This paper is aimed at the validation of a theoretical analysis of the properties of 
nonlinearly-operated weakly-coupled resonators (WCRs) for resonant sensing applications. In 
particular, we investigate the relationships between the operating point of such devices and 
different performance indicators, such as parametric sensitivity, sensitivity to drive level and to 
noise, and bandwidth. To this end, a couple of high-Q MEMS resonators exhibiting nonlinear 
restoring and damping forces are used. A careful characterization of the resonators and their 
associated electronics is made, resulting in a very good, quantitative fit between the 
experimental results and those predicted by theory. 

I Introduction 
Because of their large parametric sensitivity and their capacity to reject environmental drift, sensor 
architectures based on actively- and passively-coupled MEMS resonators are a subject of current 
research interest [1-4]. While the linear theory of operation of such devices is well-known [5-6], there 
is little theoretical background concerning their nonlinear (large oscillation amplitude) operation. 
However, some recent studies show there may be a practical interest to operating in such a regime, 
demonstrating, on a case-by-case basis, improvement in measurement range [7], signal-to-noise ratio 
[8], or drive voltage fluctuations [9] for example.  

In [10], we have presented a comprehensive theoretical framework for modeling WCRs subject to 
nonlinear restoring forces, as well as nonlinear damping forces. Based on our analysis, some common 
characteristics of nonlinear WCRs could be established. In particular, we showed that, for two coupled 
resonators oscillating at the same amplitude �#, the following features could be observed: 

- above a nonlinearity-dependent threshold amplitude, the parametric sensitivity to relative 
stiffness mismatch �ó of the amplitude ratio �4 and of the phase difference1 �ö decrease as �s���#�6, 
regardless of which nonlinearity dominates. 

- above this threshold amplitude, unless nonlinear damping forces dominate 
o at most one oscillation state is stable, depending on the sign of the Duffing parameter 

(and on another system parameter: feedback phase is the case of MILOs, coupling 
stiffness in the case of MOLOs). 

o the sensitivity to intrinsic (e.g. thermomechanical) noise of �4 decreases as���s���#�7. 
o the sensitivity to intrinsic noise of �ö decreases as �s���#. 

- when damping nonlinearity dominates, the sensitivity to intrinsic noise of �ö decreases as �s��
�#�7. 

These properties were demonstrated under several assumptions, mainly that the two resonators are 
nominally identical (i.e. their relative stiffness mismatch �ó is 0, they have the same Duffing coefficient 
�Û, the same quality factor �3, the same nonlinear damping coefficient �Ù). Furthermore, they are limited 
to a narrow bandwidth of quasi-static fluctuations, and an equally narrow range of values of �ó close to 
�ó
L �r.  

In this paper, we aim at illustrating and commenting these properties in the context of an experimental 
study, far from the ideal framework of [10]. It should be stressed that we do not seek to demonstrate 
�D�Q�� �K�\�S�R�W�K�H�W�L�F�D�O�� �L�P�S�U�R�Y�H�P�H�Q�W�� �L�Q�� �S�H�U�I�R�U�P�D�Q�F�H�� �F�R�P�S�D�U�H�G�� �W�R�� �³�F�R�Q�Y�H�Q�W�L�R�Q�D�O�´��frequency-modulated 
resonant sensors, but merely to validate our theoretical analysis, provide some helpful examples and 
gain some critical insight.  
                                                           
1 As an output metric, phase difference is only relevant for MILOs. 



To this end, the setup shown in Fig. 2 is used: it implements a MILO architecture with �à
L �v�w�¹, 
consisting of two MEMS resonators and discrete electronic components, as studied in [7]. The circuit 
and the MEMS resonators are described in section II. In particular, the nonlinear characteristics of the 
resonators are established, and the connection between electrical measurements and theoretical 
framework is made. Section III is dedicated to an experimental sensitivity analysis of the system, 
aimed at validating the quasi-static model of [10]: this provides a first, indirect proof of our claims 
regarding sensitivity to intrinsic noise of WCRs. Section IV, which is focused on the spectral analysis 
of the measured signals, illustrates the finite bandwidth of these systems. Section V is dedicated to a 
discussion and some concluding remarks. 

 

Fig. 1 �± System-level view of a MILO based on a digital mixer, as in [10]. 

 

Fig. 2 �± PCB implementation of a MILO with discrete components. 



II  Description of the setup2 
II -1 MEMS resonators 
The MEMS resonators used in these experiments are two vacuum-packaged resonant gauges taken 
from P90 pressure sensors, presented in [11] and characterized in detail in [12-13]. These one-port 
resonators consist in an electrostatically-actuated and capacitively-detected silicon beam, with natural 
frequency �B�4 
N�x�{�•���œ and quality factor �3 
N�t 
H�s�r�8. One end of the beam is perfectly clamped 
while the other is attached to the membrane used as a pressure sensing element. As a consequence of 
this imperfect clamping condition, no stress-stiffening is observed in the gauges, even at very large 
oscillation amplitudes [12], electrostatic softening being the dominant source of nonlinearity as far as 
nonlinear restoring forces are concerned. As reported in [14], internal resonances also occur in these 
resonators outside of their nominal operating range, resulting in an apparent decrease of their quality 
factor. This may adequately be modelled as a nonlinear damping phenomenon, as shown in section II -
3.  

II -1-a Simplified model of the resonators  
Each resonator is accurately described by a single-DOF non-dimensional model resulting from the 
Galerkin projection of the electrostatically-actuated Euler-Bernoulli beam equation on the first 
clamped-clamped beam eigenmode [15]: 
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where �T or �U designates the relative displacement of the center of the beam with respect to the 
electrostatic gap, �â is a parameter representing the mechanical detuning of the resonators with respect 
to their average unbiased natural frequency, �Ü�ë (resp. �Ü�ì ) is an electromechanical transduction 
coefficient, proportional to the square of bias voltage �8�Õ�ë (resp. �8�Õ�ì), and �R�ë �' �s (resp. �R�ì ) is the ratio 
of the drive voltage �8�×�å�é�ë (resp. �8�×�å�é�ì) of the resonator to its bias voltage. Expanding the numerator of 
the right-hand side to 3rd order and dropping the DC terms and the �R�ë�6 and �R�ì�6 terms, we obtain: 
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Note that the resulting model is nearly identical to (1) in [10], the main difference being the actuation 
nonlinearity appearing on the right-hand side, which is known to induce waveform-dependent 
phenomena [12]. This effect is studied in section II-2. 

II -1-b Electrostatic tuning of the resonators  
The resonators can be tuned by choosing their bias voltages so that  

�t�â
F
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k�Ü�ë 
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o
L �r.  (3) 

Changing the bias voltage of resonator �U by a small amount from �8�Õ�ì to �8�Õ�ì
E�� �8�Õ�ì, for instance, 
simulates a mechanical stiffness mismatch according to: 

                                                           
2 Note that, in the experiments of sections II, III and IV, no particular precaution is taken to control temperature, 
ambient pressure or other environmental factors. 
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Note that this also induces a change in the Duffing coefficient of the resonator and in the amplitude of 
its driving force.  

�0�H�D�V�X�U�L�Q�J���W�K�H���0�,�/�2�¶�V���R�V�F�L�O�O�D�W�L�R�Q���I�U�H�T�X�H�Q�F�\���D�W���V�P�D�O�O���R�V�F�L�O�O�D�W�L�R�Q���D�P�S�O�L�W�X�G�H�V���I�R�U���G�L�I�I�H�U�H�Q�W���E�L�D�V���Y�R�O�W�D�J�H�V��
yields the following relation between the electromechanical transduction coefficient and bias voltage 
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N�ï 
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with �ï 
L 
F�u�ä�u�w
H�s�r�?�:. 

 

Fig. 3 �± Schematic of the studied MILO, consisting of (i) MEMS resonators, (ii) feedthrough 
compensation stages, (iii) readout stages, (iv) comparators and (v) logic gates. The resistive bridges 

used for setting drive voltage values have been omitted, and passive bandpass filters at the 
comparators inputs as well. The arrows near (i) correspond to the phasor representation of the 
mechanical oscillations when �ó
L �r, those near (iv) to that of the electrical oscillation at the 

comparator output, highlighting that when �à
L �v�w�¹, the digital mixer then generates actuation voltages 
(purple arrows) with a 90° phase-lead with respect to the mechanical motion. 

II -2 Electronic circuit  and transduction 
A schematic of the studied MILO is represented in Fig. 3. We first give a general description of this 
circuit, before focusing on how motional oscillation amplitudes or actuation forces may be derived 
from the electrical signals.  

II -2-a General descriptio n of the oscillator loop  
The motional signals are amplified with transimpedance amplifiers, with equal values of the resistive 
and capacitive part of the feedback impedance at resonance, i.e. �%�Ù
L �s�w�’�	 , �4�Ù
L �s�x�r�•�3 
N
�s���t�è�B�4�%�Ù. This results in a �v�w�¹ phase-lag compared to a regular charge amplifier (with �4�Ù�(
�s���t�è�B�4�%�Ù). The output voltage �8�â�è�ç�ë then satisfies 
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where �%�4 
N�r�ä�w�’�	  is the nominal capacitance of the resonator. Note that the capacitance changes as 
the inverse of the square root of �T because of the non-uniform deformation along the length of the 
beam [15]. Note also that (6) only holds provided capacitive feedthrough is properly cancelled. In our 



setup, feedthrough cancellation is enforced via an active attenuator stage in parallel with the resonator, 
as illustrated in Fig. 3. Low-noise, high-speed AD8065 operational amplifiers are used for these two 
stages.  

The binary-valued drive signals �8�×�å�é�ë and �8�×�å�é�ì��are generated through a set of comparators 
(AD8561), logic gates (74HCT04 and 74HCT08) and potentiometers, as in [7]. Passive bandpass 
filters are used at the comparator inputs to attenuate unwanted signals below 6kHz or above 600kHz. 
A small amount of high-frequency hysteresis is also introduced, as proposed in [16]. All in all, 
simulations and measurements show that the phase delay introduced by the mixer is nearly 
independent of the amplitude or the harmonicity of its inputs, so that the electronics enforce the 
condition �à
L �v�w�¹ regardless of the oscillation amplitude, provided it is significantly higher than a few 
mV. 

Small and large-amplitude waveforms are shown in Fig. 4, highlighting the efficiency of the 
feedthrough removal, and also the distortion resulting from the detection nonlinearity for large values 
of motional oscillation amplitudes �:  and �; .  

 

Fig. 4 �± Typical waveforms at the AFE outputs and at the resistive bridge outputs when �8�Õ�ë 
L �v�r�� , 
and �8�Õ�ì 
N�u�x�� , so that �ö 
N�{�r�¹, in the cases (a) �8�×�å�é�ë
L �8�×�å�é�ì
L �s�r�r�•�� , and (b) �8�×�å�é�ë
L �8�×�å�é�ì
L

�s�� . 

II -2-b Transduction  
From (6), one may determine the relation between the RMS value at the amplifier output, which is 
measured in our experiments, and the mechanical oscillation amplitude. To this end, the solution of (6) 
is calculated assuming the input �T�:�P�; is harmonic, i.e. �T�:�P�; 
L �: �•�‹�•�ñ�P, and approximating the output 
�8�â�è�ç�ë with harmonic balance (20 harmonics are used). Then a simple model is fitted to infer �:  from 
the RMS value of �8�â�è�ç�ë (Fig. 5, solid line). This relation may be approximated as follows: 
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with 0.8% accuracy up to 50% of the gap. In our setup, the ratio �%�Ù���%�4 is measured to be equal to 35.  



 

Fig. 5 �± Relative error between �:  as estimated by (7) and actual value (solid line), and relative error 
between �(�ë�á�ì  as estimated by (8) and actual value (dashed line). 

With the same approach, one may also determine how the amplitude of the actuation force is related to 
that of the drive voltage. Two opposing effects result in a nearly perfectly linear relation between these 
two quantities. First of all, simulations show that, when the resonators oscillate in quadrature, the duty 
cycle at the comparator output decreases from 25%, when �: 
L �; �' �s, to 23.7% when �: 
L �; 
L �r�ä�w. 
This phenomenon, which results from the anharmonicity of the AFE outputs, tends to make the drive 
slightly less efficient at large oscillation amplitudes. However, it is compensated by actuation 
nonlinearity, whose impact may also be assessed with harmonic balance. Our simulations (Fig. 5, 
dashed line) show that the following expression may be used for the forces appearing in equation (14) 
in [10], provided �: 
L �; 
L �#, 
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where �8�×�ë�á�ì  is the peak value of �8�×�å�é�ë�á�ì , and �Ú
N
F�r�ä�s�u. This expression takes into account the effect 
of actuation nonlinearity and harmonic distortion of the mixer inputs: the fact that �Ú
O�r shows that, 
on the whole, the drive becomes less efficient as �:  increases. However, neglecting this term leads only 
to a 6.5% maximum error in the estimation of the driving force at 50% of the gap, so that the 
following expression is used instead of (8) 
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with little loss in accuracy. 

II -3 Characterization of nonlinear damping 
The presence of nonlinear damping in the resonators used in the present work was observed, but not 
fully characterized, in [14]. Here, this phenomenon is evidenced by the fact that, between Fig. 4-a and 
Fig. 4-b, the oscillation amplitude at the amplifier output increases by a factor which is much less than 
10, although the drive voltage goes from 100mV to 1V. One may precisely estimate the quadratic 
damping coefficients of the resonators through the relation between their oscillation amplitude and 
their excitation force. Indeed, when the resonators oscillate in quadrature, we have 
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These reduce to (23) in [10] if the damping/driving characteristics of the resonators are identical. 



 

Fig. 6 �± Characterization of nonlinear damping. Experimental measurements (circles) and quadratic 
fits (full lines). 

We represent in Fig. 6 the experimental curves of the �(�ë���:  and �(�ì ���;  ratios obtained with �8�Õ�ë
L �v�r�8 
and �8�Õ�ì 
L �u�x�8, for drive voltages ranging between 50mV and 1V. For each point, the value of the 
oscillation amplitude is obtained from the measured RMS voltage through (7), and the value of the 
force is derived from (9). This figure confirms the quadratic dependence of the damping coefficient to 
the oscillation amplitude. The (inverse of the) quality factor of each resonator is obtained by 
extrapolating the quadratic fit of the data to zero oscillation amplitude.  

Repeating this experiment for other values of �8�Õ�ë and �8�Õ�ì shows that quality factors �3�ë and �3�ì  do not 
depend on bias voltage, but that coefficients �Ù�ë and �Ù�ì  do. This observation is consistent with the 
hypothesis that, in our MEMS devices, nonlinear damping results from internal resonance, as 
considered in [14].  

III  Experimental sensitivity analysis 
III -1 Experimental protocol 
We are interested in verifying the consistency of the models established in [10], regarding the 
sensitivity to mismatch and the sensitivity to intrinsic noise of MILOs in the nonlinear regime. In this 
sub-section, we explain how these quantities may be experimentally assessed. 

III -1-a Sensitivity to mismatch  
Sensitivity to mismatch is straightforward to measure. This is done in two steps. First, for a given peak 
drive voltage �8�×�ë
L �8�×�ì, and a given value of �8�Õ�ë, one adjusts �8�Õ�ì so that the two resonators oscillate 
in quadrature (�ö 
L �{�r�¹) �± practically, this condition is obtained by finding the value of �8�Õ�ì for which 
the duty cycle of �8�×�å�é�ë is equal to that of �8�×�å�é�ì. The corresponding mechanical oscillation amplitudes 
(�:  and �;) and amplitude ratio are estimated from the RMS values of �8�â�è�ç�ë and �8�â�è�ç�ì with (7).  

Then, a stiffness variation is induced by changing the value of �8�Õ�ì by �� �8�Õ�ì ���E�\�� �D�Q�� �³�L�Q�I�L�Q�L�W�H�V�L�P�D�O�´��
amount, about 1% in all of our experiments), with the corresponding change in �ó given by (4). The 
resulting phase difference variation �Ü�ö and amplitude variations �Ü�: and �Ü�; are measured.  



The sensitivity to mismatch can then be calculated by differentiating the results obtained in the two 
steps with respect to �ó. These two steps are repeated for different values of the drive voltage (ranging 
between 50mV and 1V) and of the bias voltage �8�Õ�ë (from 25V to 40V).  

III -1-b Sensitivity to noise  
Sensitivity to noise is more tricky to determine. However, this quantity may be assessed by purely 
deterministic means: considering that thermomechanical noise amounts to four independent force 
components (�J�Ö�â�æ�ë, �J�Ö�â�æ�ì, �J�æ�Ü�á�ë, �J�æ�Ü�á�ì) acting on the resonator, one may emulate the effect of a 
change in one of these components simply by changing the drive level of one of the resonators 
independently from that of the other. For example, when �ó
N�r, changing �(�ì  by an amount �Ü�(�ì  in our 
MILO modifies equation (15-b) in [10] to 
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while leaving equations (15-a) and (15-c) unchanged (neither �Ü�(�ì  nor �J�Ö�â�æ�ì appear in them). It is then 
straightforward to show that: 
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Furthermore, for large oscillation amplitudes (with respect to either �#�½�è�Ù�Ù or �#�×�Ô�à�ã), we also have 
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Hence, the sensitivity to noise may be determined in a two-step process, as above, but this time the 
second step consists in changing the value of �8�×�ì by a small amount �� �8�×�ì (from 20mV to 50mV, as 
�8�×�ì changes from 100mV to 1V), with the corresponding change in driving force given by 

�� �(�ì 
L �t 
H�Ü�ì 
H
�| �Ï �Ï�ä

�Ï �Í�ä
.  (14) 

III -1-c Model comparison  
All the model parameters are summed up in table 1. Except for �%�Ù���%�4, all the parameters are obtained 
by characterizing the resonators, as explained in section II: the value of �ï is obtained by measuring the 
electrostatically-induced frequency shift, while damping related parameters are obtained by fitting 
parabolas to the �(�ë���:  vs. �:  and �(�ì ���;  vs. �;  curves. Note that this last step requires �%�Ù���%�4 to be known. 
The values of �3�ë�á�ì  and �Ù�ë�á�ì  given in table 1 are those obtained for �%�Ù���%�4 
L �u�t�ä�w. This value of 32.5 is 
within component tolerances of the nominal value (equal to 30) of �%�Ù���%�4, and gives a slightly better fit 
between the model and the experimental results, as shown in section IV.  

Parameter �%�Ù���%�4��  �ï  �3 �Ù �Ù 

Unit no dim. �� �?�6 no dim. no dim. no dim. 

Condition    �8�Õ�ë
L �t�w�� �8�Õ�ë
L �v�r��  

Resonator �T 
�u�t�ä�w 
F�u�ä�u�w
H�s�r�?�: 

�s�{�ä�w
H�s�r�7 �s�s�ä�y
H�s�r�?�7 �x�ä�x�z
H�s�r�?�7 

Resonator �U �s�v�ä�v
H�s�r�7 �s�ä�y�u
H�s�r�?�7 �t�ä�x�x
H�s�r�?�7 

Table 1 �± Model parameters used in section IV.  



IV-2 Results  
Experimental results obtained with the protocol described in the previous section are shown in Fig. 7. 
The results obtained with a quasi-static model of the fluctuations (continuous lines) are superposed to 
the experimental data (crosses and circles). In order to improve the readability of this experimental 
sensitivity analysis, the sensitivities to noise and to mismatch are represented versus the average 
oscillation amplitude:  

�#�Ô�é�Ú
L
�Ñ�>�Ò

�6
.  (15) 

We can verify that there is a very good fit between the model and the experimental data. There is a 
quantitative fit for most curves over several orders of magnitude, except in the case of sensitivity to 
mismatch at �8�Õ�ë
L �t�w�8, where the model systematically overestimates sensitivity by about 3dB. 
However, even in that case, the experimental and simulated results have highly similar trends. 
Thereby, the theoretical analysis of [10] is validated.  

 

Fig. 7 �± Experimental (circles and crosses) and simulated (full lines) sensitivities of the MILO with 
different operating conditions. Blue corresponds to phase difference, red to amplitude ratio. Vertical 
dashed lines correspond to the average critical Duffing (magenta) and damping (green) amplitudes of 

the resonators. 

The two sets of results are qualitatively different in the sense that, in the case �8�Õ�ë
L �t�w�8 (and 
�8�Õ�ì 
N�s�y�8), the average critical Duffing amplitude is about twice as large as in the case �8�Õ�ë 
L �v�r�8 
(and �8�Õ�ì 
N�u�x�8) - 11% of the gap, as opposed to 6% of the gap. On the other hand, the critical 
damping amplitude is relatively unchanged - 28% of the gap in the first case, and 26% in the second. 
Thus, in the case �8�Õ�ë
L �v�r�8, there is a wider region in which nonlinear stiffening dominates, in which 
the sensitivity to force (and hence to intrinsic noise) of the phase-difference decreases at a much 



slower rate than its sensitivity to mismatch. In the same region, the sensitivity to force of the 
amplitude ratio decreases with �#�Ô�é�Ú much faster than that of the phase difference. Since the 
sensitivities to mismatch of these two quantities decrease at approximately the same rate, the FOMs of 
the different output metrics (extrapolated from our model) are quite different, depending on whether 
�8�Õ�ë
L �t�w��  or �8�Õ�ë
L �v�r�� , as shown in Fig. 8.  

Systematic errors may result from our overlooking the dependence on bias voltage of a system 
parameter: for example, the static deformation of the resonator beam (and consequently �%�Ù���%�4), which 
is bias voltage-dependent, is not accounted for. Moreover the expressions of the electrostatic force 
used in (1) and that of the motional current used in (6) are valid in the case of an initially straight 
clamped-clamped beam oscillating along its first eigenmode [15], whereas, in the present case, the 
beam has a pressure-induced initial deformation, which also influences the electrostatic softening 
coefficient. However, we do not have sufficient data to accurately account for these effects and must 
content ourselves with the current model. Measurement errors are of a different nature depending on 
whether the oscillation amplitude is small or large (the amplitude span of our experiment is from 
0.05% to 50% of the gap): at small amplitudes, the sensitivity to mismatch is large (on the order of 
�s�v
H�s�r�7), making it difficult to manually tune �8�Õ�ì to obtain �ö 
L �{�r�¹. Furthermore, the sensitivity to 
driving force fluctuations (and more generally to noise) is also large, which results in unstable 
readings. At large amplitudes, both sensitivities are considerably reduced (by about one order of 
magnitude, concerning the sensitivity to mismatch), and are therefore more difficult to estimate 
because of the limited accuracy of the oscilloscope (MSO5204) used in these experiments. 

 

Fig. 8 �± Extrapolated FOM of amplitude ratio (red) and of phase difference (blue), for ���`�v 
L �t�w�� (a) 
and ���`�v 
L �v�r�� (b) vs. oscillation amplitude. Vertical dashed lines correspond to the average critical 
Duffing (magenta) and damping (green) amplitudes of the resonators. The dotted lines represent the 

ratio of sensitivity to mismatch over sensitivity to force. 

IV Spectral analysis  
In this section, we seek to validate the results established in [10] regarding the dynamic behavior of 
WCRs, through an analysis of the spectra of different output metrics. 

IV-1 Experimental protocol 
The spectra presented in this section are obtained by setting �8�Õ�ë
L �v�r�8, and �8�Õ�ì 
N�u�x�8 so that the 
resonators oscillate in quadrature. Then 50 consecutive 4-second-long acquisitions of �8�â�è�ç�ë and �8�â�è�ç�ì 
are taken with a high-resolution 2-channel digitizer (Alazar ATS660, 16-bit digitizer) at a sampling 
frequency of 500kHz. For each acquisition, �8�â�è�ç�ë

�6 , �8�â�è�ç�ì
�6  and �8�â�è�ç�ë
H�8�â�è�ç�ì are averaged with a sliding 



window, yielding an estimate of the fluctuations of �4 and �ö over time. Reduced-variance spectra are 
then obtained by averaging the 50 periodograms resulting from each acquisition ���%�D�U�W�O�H�W�W�¶�V���P�H�W�K�R�G������ 

IV-2 Results 
The power spectra of the fluctuations of �4 and �ö obtained at three oscillation amplitudes (�#�Ô�é�Ú 
varying from 0.26 to 0.46) are represented in Fig. 9-a and Fig. 9-b. The measured noise levels are 
much larger than the thermomechanical noise floor or than ou�U���G�L�J�L�W�L�]�H�U�¶�V�����7�K�H�\ are consistent with the 
voltage fluctuations of the power supplies (of about 3mV peak-to-peak), which result, through �8�Õ�ë and 
�8�Õ�ì���� �L�Q�� �D�G�G�L�W�L�Y�H�� �P�H�D�V�X�U�H�P�H�Q�W�� �Q�R�L�V�H�� �D�W�� �W�K�H�� �$�)�(�¶�V�� �R�X�W�S�X�W���� �D�Q�G��in variations of �ó around 0. More 
precisely, assuming �8�Õ�ë�:�P�; 
L �8�Õ�ë
$
$
$
$
E�R�Õ�ë�:�P�;, equation (6) becomes:  
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and (4-5) yield: 

�ó�:�P�; 
N
F
�7

�6
�ï�8�Õ�ë
$
$
$
$�R�Õ�ë�:�P�;. (17) 

The superposition of these two effects can partly explain the measured spectra: measurement noise 
results in a white noise floor, while the STF of the output metrics �± equations (36-38) in [10] �± 
amplifies the variations of �ó around 0. The simulated spectra accounting only for these two effects are 
plotted in Fig. 9-c. 

 

Fig. 9 �± Experimental phase difference (a) and amplitude ratio (b) spectra, at three different drive 
amplitudes. Simulated spectra (c) of phase difference (full lines) and amplitude ratio (dashed lines) 

assuming fluctuations result only from white bias voltage noise.   



We find a rather good agreement between the experimental and simulated spectra of �4. The level of 
the fluctuations at �� �ñ�Ì�Í�¿ corresponds quite well to what is theoretically predicted (Fig. 9-c), with the 
characteristic bump in the STF. At very low frequency offset, the experimental spectrum of �4 is 
dominated by flicker noise, whose origin is yet unclear. It may well be caused by the active electronics 
of our circuits, in spite of the precautions that were taken to avoid this phenomenon, or might result 
from other effects, such as intrinsic mechanical stiffness fluctuations [17].  

The comparison of the experimental and simulated spectra of �ö is more puzzling: although these 
spectra share some quantitative similarities, the resonance peak in the experimental STF is much less 
marked than expected. This might be a consequence of the flicker noise which becomes visibly 
predominant at low frequency offsets. Another explanation may be that the fluctuations of �� �ñ�Ì�Í�¿ over 
the time required for doing the 50 measurements cannot be considered infinitesimal (as implicit in the 
perturbation analysis conducted in [10]), resulting in a spread-out peak in the spectrum of �ö. 

V Conclusion 
This paper provides, for the first time, an experimental proof of several results postulated in [10] for 
nonlinear WCRs with a critical Duffing amplitude smaller than the critical damping amplitude 
(�#�½�è�Ù�Ù
O�#�×�Ô�à�ã). Using two matched resonators displaying such nonlinear behavior, we have 
verified:  

- the similar decrease in parametric sensitivity of �4 and �ö in WCRs operated above �#�½�è�Ù�Ù.  
- the improved robustness to drive-level fluctuations (and hence to intrinsic oscillator noise) of 

�4 between �#�½�è�Ù�Ù and �#�×�Ô�à�ã. 
- the amplitude-dependence of the bandwidth in which �4 and �ö are sensitive to intrinsic noise 

and to stiffness mismatch �ó. 

These experimental results were found to be in quantitative agreement with our simulations, which 
validates the analysis in [10].  

As mentioned in section I, sensor performance was not our primary concern. Still, the results presented 
in this paper may be analyzed in this respect. We have shown that, in the current setup, operating at a 
large oscillation amplitude results in a wider bandwidth for both �4 and �ö, but in no clear gain in terms 
of input-referred noise (since our noise floor results largely from stiffness mismatch noise). 
Furthermore, because of the predominance of bias voltage noise over thermomechanical noise, there is 
little to be gained �± in the present case �± in using one output metric rather than the other. However, 
this is not a definitive result, as there remains much room for decreasing electronic noise in our circuit, 
nor is it a general result.  

Finally, several questions remain unanswered, and require further investigation. First, the spread-out 
outlook of the peaks in the observed experimental spectra is unexplained, although some hypotheses 
were formulated as to this phenomenon. One may then refine the models in [10] to account for flicker, 
drift and finite fluctuations of the system parameters, for example by using a non-perturbed model 
such as (7) in [10] or multiple-scale analysis [18]. More practically, one may also try to reproduce the 
experiments in a carefully controlled environment, or with better-matched resonators (which would 
more efficiently reject common-mode variations).  

Another point that requires further study is the behavior of WCRs when damping nonlinearity 
dominates: first, as mentioned in [10], there does not seem to be a definitive theory linking 
thermomechanical noise to nonlinear damping. Decreasing (bias voltage) noise in our setup may then 
help us investigate this phenomenon. Alternatively, other resonators with increased damping, in 
particular MEMS resonators operated in ambient atmospheric pressure and subject to squeezed-film 
damping, may be better suited to this investigation. 



References 
[1] �&���� �=�K�D�R�� �H�W�� �D�O������ �³�$�� �U�H�Y�L�H�Z�� �R�Q�� �F�R�X�S�O�H�G�� �0�(�0�6�� �U�H�V�R�Q�D�W�R�U�V�� �I�R�U�� �V�H�Q�V�L�Q�J�� �D�S�S�O�L�F�D�W�L�R�Q�V�� �X�W�L�O�L�]�L�Q�J�� �P�R�G�H��
�O�R�F�D�O�L�]�D�W�L�R�Q�´�����6�H�Q�V�R�U�V���D�Q�G���$�F�W�X�D�W�R�U�V���$�����Y�R�O���������������S�S��������-111, 2016. 

[2] �0���� �3�D�Q�G�L�W���� �&���� �=�K�D�R���� �*���� �6�R�E�U�H�Y�L�H�O�D���� �$���� �$�� �6�H�V�K�L�D���� �³�,�P�P�X�Q�L�W�\�� �W�R�� �7�H�P�S�H�U�D�W�X�U�H�� �)�O�X�F�W�X�D�W�L�R�Qs in 
�:�H�D�N�O�\���&�R�X�S�O�H�G���0�(�0�6���5�H�V�R�Q�D�W�R�U�V�´���������������,�(�(�(���6�H�Q�V�R�U�V���&�R�Q�I�H�U�H�Q�F�H�����S�S������-4, 2018. 

[3] �-�����-�X�L�O�O�D�U�G�����3�����3�U�D�F�K�H�����1�����%�D�U�Q�L�R�O�����³�$�Q�D�O�\�V�L�V���R�I���P�X�W�X�D�O�O�\���L�Q�M�H�F�W�L�R�Q-locked oscillators for differential 
�U�H�V�R�Q�D�Q�W���V�H�Q�V�L�Q�J�´�����,�(�(�(���7�U�D�Q�V�D�F�W�L�R�Q�V���R�Q���&�L�U�F�X�L�W�V���D�Q�G���6�\�V�W�H�P�V���������Yol. 63, pp. 1055-1066, 2016. 

[4] �3�����3�U�D�F�K�H�����-�����-�X�L�O�O�D�U�G�����3�����0�D�U�L�V���)�H�U�U�H�L�U�D�����1�����%�D�U�Q�L�R�O�����0�����5�L�Y�H�U�R�O�D�����³�'�H�V�L�J�Q���D�Q�G���F�K�D�U�D�F�W�H�U�L�]�D�W�L�R�Q���R�I���D��
monolithic CMOS-MEMS mutually injection-�O�R�F�N�H�G�� �R�V�F�L�O�O�D�W�R�U�� �I�R�U�� �G�L�I�I�H�U�H�Q�W�L�D�O�� �U�H�V�R�Q�D�Q�W�� �V�H�Q�V�L�Q�J�´����
Sensors and Actuators A, vol. 269, pp. 160-170, 2018. 

[5] �3�����7�K�L�U�X�Y�H�Q�N�D�W�D�Q�D�W�K�D�Q�����-�����<�D�Q�����-�����:�R�R�G�K�R�X�V�H�����$�����$�����6�H�V�K�L�D�����³�(�Q�K�D�Q�F�L�Q�J���S�D�U�D�P�H�W�U�L�F���V�H�Q�V�L�W�L�Y�L�W�\���L�Q��
�H�O�H�F�W�U�L�F�D�O�O�\�� �F�R�X�S�O�H�G�� �0�(�0�6�� �U�H�V�R�Q�D�W�R�U�V�´���� �,�(�(�(�� �-�R�X�U�Q�D�O�� �R�I�� �0�L�F�U�R�H�O�H�F�W�U�R�P�H�F�K�D�Q�L�F�D�O�� �6�\�V�W�H�P�V���� �Y�R�O���� ��������
pp. 1077-1086, 2009. 

[6] J. Juill�D�U�G�������3�����3�U�D�F�K�H�����3�����0�����)�H�U�U�H�L�U�D�����1�����%�D�U�Q�L�R�O�����³�8�O�W�L�P�D�W�H���/�L�P�L�W�V���R�I���'�L�I�I�H�U�H�Q�W�L�D�O���5�H�V�R�Q�D�Q�W���0�(�0�6��
�6�H�Q�V�R�U�V���%�D�V�H�G���R�Q���7�Z�R���&�R�X�S�O�H�G���/�L�Q�H�D�U���5�H�V�R�Q�D�W�R�U�V�´�����,�(�(�(���7�U�D�Q�V�D�F�W�L�R�Q�V���R�Q���8�O�W�U�D�V�R�Q�L�F�V�����)�H�U�U�R�H�O�H�F�W�U�L�F�V����
and Frequency Control, vol. 65, pp. 2440-2448, 2018. 

[7] J. Juill�D�U�G���� �$���� �0�R�V�W�D�I�D���� �3���� �0���� �)�H�U�U�H�L�U�D���� �³�1�R�Q�O�L�Q�H�D�U�� �H�Q�K�D�Q�F�H�P�H�Q�W�� �R�I�� �O�R�F�N�L�Q�J�� �U�D�Q�J�H�� �R�I�� �P�X�W�X�D�O�O�\��
injection-�O�R�F�N�H�G���R�V�F�L�O�O�D�W�R�U�V���I�R�U���U�H�V�R�Q�D�Q�W���V�H�Q�V�L�Q�J���D�S�S�O�L�F�D�W�L�R�Q�V�´�����(�X�U�R�S�H�D�Q���)�U�H�T�X�H�Q�F�\���D�Q�G���7�L�P�H���)�R�U�X�P����
pp. 109-113, 2018. 

[8] �-�����-�X�L�O�O�D�U�G�����$�����0�R�V�W�D�I�D�����3�����0�����)�H�U�U�H�L�U�D�����³�$�Q�D�O�\�Vis of resonant sensors based on mutually injection-
�O�R�F�N�H�G���R�V�F�L�O�O�D�W�R�U�V���E�H�\�R�Q�G���W�K�H���F�U�L�W�L�F�D�O���'�X�I�I�L�Q�J���D�P�S�O�L�W�X�G�H�´�����(�X�U�R�S�H�D�Q���)�U�H�T�X�H�Q�F�\���D�Q�G���7�L�P�H���)�R�U�X�P�����S�S����
114-118, 2018. 

[9] �0���� �3�D�Q�G�L�W���H�W���D�O������ �³�5�H�G�X�F�W�L�R�Q���R�I�� �$�P�S�O�L�W�X�G�H���5�D�W�L�R���'�H�S�H�Q�G�H�Q�F�H���R�Q���'�U�L�Y�H�� �/�H�Y�H�O���L�Q���0�R�G�H�� �/�R�F�D�O�Lzed 
�5�H�V�R�Q�D�Q�W���0�(�0�6���6�H�Q�V�R�U�V�´�����,�(�(�(���6�H�Q�V�R�U�V���F�R�Q�I�H�U�H�Q�F�H���������S�S���������������� 

[10] �-�����-�X�L�O�O�D�U�G�����$�����0�R�V�W�D�I�D�����3�����0�����)�H�U�U�H�L�U�D�����³�1�R�Q�O�L�Q�H�D�U���R�S�H�U�D�W�L�R�Q���R�I���U�H�V�R�Q�D�Q�W���V�H�Q�V�R�U�V���E�D�V�H�G���R�Q���Z�H�D�N�O�\-
coupled resonators: theory and modeling� ,́ available as preprint on HAL, 2019. 

[11] J. Mandle, O. Lefort, �$�����0�L�J�H�R�Q�����³�$���Q�H�Z���P�L�F�U�R�P�D�F�K�L�Q�H�G���V�L�O�L�F�R�Q���K�L�J�K���D�F�F�X�U�D�F�\���S�U�H�V�V�X�U�H���V�H�Q�V�R�U�´����
Sensors and Actuators A, vol. 46-47, pp.129-132, 1995. 

�>�����@���$�����%�U�H�Q�H�V�����-�����-�X�L�O�O�D�U�G�����/�����%�R�X�U�J�R�L�V�����)�����9�L�Q�F�L���G�R�V���6�D�Q�W�R�V�����³Influence of the Driving Waveform on 
the Open-Loop Frequency Response of MEMS Resonators With Nonlinear Actuation Scheme�V�´����
IEEE/ASME  Journal of Microelectromechanical Systems, vol. 25, pp. 812-820, 2015. 

�>�����@�� �$���� �%�U�H�Q�H�V���� �³�0�R�G�p�O�L�V�D�W�L�R�Q�� �G�H�V�� �S�K�p�Q�R�P�q�Q�H�V�� �Q�R�Q-linéaires dans un capteur MEMS résonant pour 
�O�
�R�S�W�L�P�L�V�D�W�L�R�Q���G�H���V�H�V���S�H�U�I�R�U�P�D�Q�F�H�V���H�W���G�H���V�D���I�L�D�E�L�O�L�W�p���´���3�K.D. thesis, Université Paris-Saclay, 2015. 

[14] A. Brenes, J. Juillard, F. Vinci �G�R�V���6�D�Q�W�R�V�����³�(�O�H�F�W�U�R�V�W�D�W�L�F�D�O�O�\-induced modal crosstalk phenomena 
�L�Q�� �U�H�V�R�Q�D�Q�W�� �0�(�0�6�� �V�H�Q�V�R�U�V�´, Symposium on Design, Test, Integration and Packaging of MEMS 
MOEMS, pp. 1-4, 2014. 

[15] J. Juillard, �³Analysis of resonant pull-in of microelectromechanical oscillators� ,́ Journal of Sound 
and Vibration, vol. 350, pp. 123-139, 2015. 

[16] AD8561 Datasheet, rev. D, https://www.analog.com/media/en/technical-documentation/data-
sheets/AD8561.pdf  



[17] M. Sansa et al., �³Frequency fluctuations in silicon nanoresonators� ,́ Nature Nanotechnology, vol. 
11, pp. 552-558, 2016. 

[18] A. H. Nayfeh, D. T. Mook, �³Nonlinear Oscillations�´�� Wiley, 1979. 


