

Investigating fuel staging influence on the stabilization process of a turbulent swirling flame using two-phase flow large eddy simulation

Léo CUNHA CALDEIRA MESQUITA, Antoine RENAUD, Laurent ZIMMER, Aymeric VIÉ, Sébastien DUCRUIX

université

PARIS-SACLAY

^a Laboratoire EM2C, CNRS, CentraleSupelec, Université Paris-Saclay Grande Voie des Vignes, 92290 Châtenay-Malabry, France

- Built to better understand LPP burners
- Two swirling stages with two types of liquid fuel injection:
 - Multipoint: 85% of air mass flow and 10 fuel jets in cross-flow to achieve LPP regime
 - > Pilot: 15% of air mass flow and hollow cone fuel spray to stabilize combustion
- High swirl numbers (S≈1)
- Liquid fuel: Dodecane (C₁₂H₂₆) as kerosene surrogate

Most recent experimental data^{1,2} and numerical comparisons

- Staging factor α varied from 100% to 0% and back
- Hysteresis cycle below $\alpha = 20\%$
- The flame is stabilized in a V shape throughout all operating points with decreasing α
- However, when pilot injection is ceased, the flame detaches and stabilizes in a M lifted shape
- This flame transition can also be forced by the operation of the siren
- Two operating points were extensively studied:
 - $\alpha = 15\%$: two states, sV or Lifted
 - $\alpha = 100\%$: V flame

Experimental data available:

Air: $m_{air} = 43.1g/s$, T=433K Fuel: $m_{fuel} = 1.64 \text{ g/s}$, T = 300 K

- $\alpha = 15\%$ (non-reacting and reacting)
 - Mie-scattering spray
 - PIV (velocity)
 - PDA (SMD, size distribution, velocity)
 - CH* chemiluminescence (Abel)
- α = 20% (reacting)
 - Mie-scattering spray
 - PIV (velocity)
 - PDA (SMD, size distribution, velocity)
 - CH* chemiluminescence (Abel)

Air: $m_{air} = 32.3g/s$, T=473K Fuel: $m_{fuel} = 1.02 \text{ g/s}$, T = 300 K

- α = 100% (non-reacting and reacting)
 - Mie-scattering spray
 - PIV (velocity)
 - PDA (SMD, size distribution, velocity)
 - CH* chemiluminescence (Abel)

AVBP LES compressible solver^{4,5,6}

Modeling

- WALE for subgrid scale modeling
- Polydisperse Lagrangian modeling for the liquid phase
- BFER two-step chemistry model
- DTF-LES combustion model

Numerics & boundary conditions

- 26 M tetrahedra mesh

- NSCBC boundary conditions for inlets and outlets

TTGC scheme for both gas and liquid phases Pilot injection: FIMUR injection model Multipoint injection: imposed mass flow rate

Flow can be blocked from 0% to

88% by a rotating toothed wheel

AVBP CERF4C)

Numerical domain:

Non-reacting data used

- For the pilot injector distribution
 - Experimental PDF available
- For the multipoint distribution
 - Only mixed injection point $\alpha =$ 15% available
 - Pilot injector PDF is known and considered unchanged with regime

Multipoint PDF is deduced by subtraction

Polydisperse Lagrangian modeling for the liquid phase

 $\alpha = 100\%$

$\alpha = 15\%$

sV flame

- Mostly in premixed regime
- Pilot flame at injectors exit stabilizes combustion
 - Multi-regime flame

Abel inverted mean CH* chemiluminescence image for the sV flame (left). Heat release for the sV flame (right).

Lifted flame

- Mostly in premixed regime
- Strong combustion instability observed
 - Longitudinal 300hz mode

Abel inverted mean CH* chemiluminescence image for the lifted flame (left). Heat release for the lifted flame (right).

$\alpha = 100\%$

V flame

- Strong interaction between spray, flame and recirculation zone
- Two flame zones according to spray penetration or not in the recirculation zone

Abel inverted mean CH* chemiluminescence image for the pilot-only V flame (left). Heat release for the V flame (right).

To summarize

- A laboratory-scale two-stage swirling burner fueled with liquid dodecane has been studied experimentally and numerically using large eddy simulations
 - Using lagrangian polydispersed approach
 - Other studies⁷ were done using eulerian monodispersed approach
- Simulations were compared to existing experimental results
- The simulated flames show different shapes and dynamics

Future developments:

• Investigating flame dynamics to determine the physics of the hysteresis phenomenon evidenced in the experiments

Acknowledgments

- We thank CERFACS and IFPEN for kindly sharing the AVBP solver with us
- ■This work was granted access to the HPC resources of CINES under the allocation 2013-2012020164 from GENCI

References

- [1] Renaud, A., Ducruix, S., and Zimmer, L., Proceedings of the Combustion Institute 36 (2017) 3899–3906
- [2] Renaud, A., Ducruix, S., Scouflaire, P. and Zimmer, L., Proceedings of the Combustion Institute 35 (2015) 3365–3372
- [3] T. Providakis, L. Zimmer, P. Scouflaire, S. Ducruix, Comptes Rendus Mécanique 341 (2013) 4–14 [4] M. Sanjosé, J.-M. Senoner, F. Jaegle, B. Cuenot, S. Moreau, T. Poinsot, Int. J. of Multiphase Flow 37 (2011)
- [5] B. Franzelli, E. Riber, M. Sanjosé, T. Poinsot, Combustion and Flame 157 (2010) 1364 1373
- [7] Cheneau, B., Vie, A., and Ducruix, S., ASME GT2015-42821 (2015)
- [6] B. Franzelli, A. Vié, B. Fiorina, N. Darabiha, ASME GT2013-94451 (2013)