K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy, vol.2, p.17032, 2017.

W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys, vol.32, p.510, 1961.

M. J. Kerr, A. Cuevas, and P. Campbell, Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination, Progress In Photovoltaics: Research and Applications, vol.11, 2003.

M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi et al., Solar cell efficiency tables (version 50), Prog Photovolt Res Appl, vol.25, p.668, 2017.

E. L. Warren, M. G. Deceglie, M. Rienäcker, R. Peibst, A. C. Tamboli et al., Maximizing tandem solar cell power extraction using a three-terminal design, Sustainable Energy & Fuels, vol.2, p.1141, 2018.

R. R. King, W. Boca, X. Q. Hong, D. Liu, D. Bhusari et al., Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells acknowledgments, Photovolt. Sol. Energy Conf, pp.55-61, 2009.

T. S. Takamoto, H. Washio, and H. Juso, Application of InGaP / GaAs / InGaAs triple Junction Solar cells to Space Use and Concentrator Photovoltaic, 2014 IEEE 40th Photovoltaic Specialist Conference, pp.1-5, 2014.

J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, Designing III-V multijunction solar cells on silicon, Prog. Photovolt: Res. Appl, vol.22, p.810, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00931339

A. D. Vos, Detailed balance limit of the efficiency of tandem solar cells, J. Phys. D. Appl. Phys, vol.13, p.839, 1980.

, Press release: Alta Devices Achieves "31.6% Solar Energy Efficiency Record; Changes the Fundamental Economics for Unmanned Aerial Vehicles, 2016.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli et al., Comparison of direct growth and wafer bonding for the fabrication of GaInP/GaAs dual-junction solar cells on silicon, IEEE J. Photovoltaics, vol.4, p.620, 2014.

K. Tanabe, K. Watanabe, and Y. Arakawa, III-V/Si hybrid photonic devices by direct fusion bonding, Sci. Rep, vol.2, p.349, 2012.

R. Cariou, J. Benick, P. Beutel, N. Razek, C. Flötgen et al., Monolithic Two-Terminal III-V//Si Triple-Junction Solar Cells With 30.2% Efficiency Under 1-Sun AM1.5g, IEEE J. Phot, vol.7, p.367, 2017.

L. Reichertz and I. Gherasoiu, Progress on III-nitride/silicon hybrid multijunction solar cells, 2010 IEEE 35th Photovoltaic Specialist Conference (PVSC) (2010), pp.1044-1047

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy, vol.2, p.17009, 2017.

H. Liu, Z. Ren, Z. Liu, A. G. Aberle, T. Buonassisi et al., The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study, Opt. Express, vol.23, p.382, 2015.

J. Yang and R. Kleiman, Optimization of bonded III-V on Si multi-junction solar cells, Conf. Rec. IEEE Photovolt. Spec. Conf, pp.2151-2153, 2013.

S. Essig, C. Allebé, T. Remo, J. F. Geisz, M. A. Steiner et al., Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nat. Energy, vol.2, p.17144, 2017.

J. Werner, L. Barraud, A. Walter, M. Bräuninger, F. Sahli et al., Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells, ACS energy Lett, vol.1, p.474, 2016.

T. Nagashima, K. Okumura, K. Murata, and Y. Kimura, Three-terminal tandem solar cells with a back-contact type bottom cell, Proc. 28th IEEE Photovoltaic Specialists Conference, pp.1193-1196, 2000.

T. Nagashima, K. Hokoi, K. Okumura, and M. Yamaguchi, Surface passivation for germanium and silicon back contact type photovoltaic cells, Proc. 4th World Conference on Photovoltaic Energy Conference, pp.655-658, 2006.

J. C. Jimeno, R. Gutierrez, V. Fano, A. Habib, C. Cañizo et al., A 3 terminal parallel connected silicon tandem solar cell, Energy Procedia, vol.92, p.644, 2016.

A. Mart? and A. Luque, Three-terminal heterojunction bipolar transistor solar cell for highefficiency photovoltaic conversion, Nature communications, vol.6, p.6902, 2015.

G. W. Adhyaksa, E. Johlin, and E. C. Garnett, Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency, Nano Lett, vol.17, pp.5206-5212, 2017.

Z. Djebbour, W. El-huni, A. Migan, and J. Kleider, Photovoltaic Cell

I. Almansouri, A. Ho-baillie, S. P. Bremner, and M. A. Green, Supercharging silicon solar cell performance by means of multijunction concept, IEEE J. Photovoltaics, vol.5, issue.3, p.968, 2015.

S. Adachi, Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1?xAs, and In1?xGaxAsyP1?y, J. Appl. Phys, vol.66, p.6030, 1989.

D. M. Caughey and R. E. Thomas, Carrier Mobilities in Silicon Empirically Related to Doping and Field, Proc. IEEE, vol.55, p.2192, 1967.

M. E. Law, E. Solley, M. Liang, and D. E. Burk, Self-consistent model of minority-carrier lifetime, diffusion length, and mobility, IEEE Electron Dev. Lett, vol.12, p.401, 1991.

J. G. Fossum and D. S. Lee, A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon, Solid-State Electronics, vol.25, p.741, 1982.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys, vol.89, p.5815, 2001.

L. Guijiang, W. Jyhchiarng, and H. Meichun, Theoretical modeling of the interface recombination effect on the performance of III-V tandem solar cells, Journal of Semiconductors, vol.31, 2010.

M. Y. Ghannam, J. Poortmans, J. F. Nijs, and R. P. Mertens, Theoretical study of the impact of bulk and interface recombination on the performance of GaInP/GaAs/Ge triple junction tandem solar cells. Photovoltaic Energy Conversion, Proceedings of 3rd World Conference, vol.1, pp.666-669, 2003.

S. Adachi, Physical Properties of III-V Semiconductor Compounds InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, 1992.

E. Franklin, K. Fong, K. Mcintosh, A. Fell, A. Blakers et al., Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell, Progress In Photovoltaics: Research and Applications, vol.24, issue.4, p.411, 2014.

W. El-huni, A. Migan, Z. Djebbour, J. Salvestrini, and A. Ougazzaden, High-efficiency InGaN/Si tandem photovoltaic solar cells modelling using InGaN semibulk material: monolithic integration vs. 4-terminals tandem cells, Progress in Photovoltaic: Research and Application, 2016.

C. R. Allen, J. M. Woodall, and J. Jeon, Results of a gallium phosphide photovoltaic junction with an AR coating under concentration of natural sunlight, Solar Energy Materials & Solar Cells, vol.95, pp.2655-2658, 2011.

J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz, and D. J. Friedman, Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells, Appl. Phys. Lett, vol.103, p.41118, 2013.

A. Gudovskikh, I. Morozov, A. Uvarov, D. Kudryashov, E. Nikitina et al., Low temperature plasma enhanced atomic layer deposition of GaP films on Si substrate, J. Vac. Sci. Tech. A : Vacuum, Surfaces, and Films, vol.36, p.21302, 2018.