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Towards a realistic and integrated strain design in batch bioreactor

Guillaume Jeanne1,2 Anne Goelzer1 Sihem Tebbani2 Didier Dumur2 Vincent Fromion1

Abstract— Recent advances in modeling bacterial cell func-
tioning have deeply renewed questions about bioprocess design
and opens the way towards the development of computer aided
design (CAD) for strains. This article aims at explaining and
exploring the consequences opened by the new cell models,
investigating the questions related to the biological implemen-
tation of optimal strategies and in conclusion the possible role
of the complex regulatory network in the retuning of the strain.

I. INTRODUCTION

A bioprocess can be seen as a complex interaction be-
tween a specific medium and a micro-organism population.
When successfully managed, the combination of the two can
lead to an efficient production of compounds of interest.
For decades, bioprocesses have been optimized through an
iterative procedure combining two separate stages: a first
stage where the micro-organism is selected or directly ge-
netically modified through genome engineering tools, e.g.
gene cloning; a second stage where the culture conditions
and the composition of the medium are optimized in order
to maximize the production of compounds of interest by the
modified strain.

The optimization of culture conditions has been already
investigated in the automatic control field, see e.g. [1], [2], in
contrast to the problem of the strain design. The strain design
is usually achieved without the help of mathematical models,
by an intensive experimental trial-and-error cycle, i.e. a
cycle of strain modifications followed by the experimental
characterization the modified strain. However, the continuous
progress in the understanding of the cell functioning along
these last decades opened the way for approaches where
mathematical models play a more important role in the
strain design. For instance, the development of genome-
scale metabolic models of micro-organisms supported the
developments of metabolic engineering tools along the 90’s
and 2000’s [3], and even for the strain design [4].

However, a few key ingredients are still missing in
metabolic models, which prevent their use for computer-
aided design (CAD) of strains. Actually, metabolic models
integrate a mass balance constraint within the metabolic
network, but do not capture the cellular constraints limiting
growth rate structurally and governing the resource allocation
between cellular processes [5]. Indeed, a cell is composed
of cellular subsystems (the cellular processes) that share a
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common set of resources and that all together contribute to
the growth rate. This results in the inability of metabolic
models to anticipate the consequences of strain modification
at the cell scale for rerouting the resources devoted to
biomass production towards the production of compounds
of interest. In conclusion even if useful methods for strain
design already exist [4], they do not incorporate some
constraints that are essential for predicting the cell behavior.
Without integrating those constraints, it seems illusory to
develop the next generation of computer-aided strain design.

Recently, several mathematical approaches were proposed
in [5], [6], [7], [8] to integrate within a mathematical
framework the constraints governing the resource allocation
between cellular processes. Among these approaches, only
the RBA (Resource Balance Analysis) approach introduced
in [6], [9] led to formulate the problem in a way compat-
ible to the development of CAD strain design, since it is
at the genome scale and is formulated as a quasi-convex
optimization problem. The RBA approach was biologically
validated in 2015 in [10] for bacteria and predicts for a
given medium in steady-state the maximal growth rate, the
abundances of proteins and of molecular machineries, and
the flux distribution at the cell scale. Moreover, it has been
recently proved that the general principle within RBA, i.e.
the parsimonious use of resources by the cell, may explain
the emergence of the cell’s regulatory network [11]. Clearly,
the RBA approach forms the premises and possible basis of
a strain design method.
However, we have also to consider additional constraints
related to the implementation of the designed laws. For
bacteria, the general principles governing gene expression
emerged recently and allow to propose a first way to retune
the level of existing genes or to plug new genes in modified
strain. Actually, the new experimental tools for genome
engineering, pave the way for massive bacterial genome
modifications in a near future through for example the
reprogramming of an existing bacteria chromosome (see e.g.
[12], [13] to cite a very few). Today, a strong imbalance
exists between the possibilities opened up by new genetic
engineering tools and our ability to design a strain rationally.
In a near future, the question will be no longer whether the
changes can be made but what they are.

This paper proposes a first step in this direction. We
revisited the standard design approach where only the culture
conditions are optimized while integrating the constraints
managing resource allocation and implementation of de-
signed laws. In view of the complexity of cell functioning,
our idea here is to present the bases of a new approach for
the strain design. We emphasize in the rest of this article how



the degrees of freedom that this approach offers can be taken
into account. The paper is organized as follows. In Section II,
a general model including a cellular and an external medium
description is presented. Then, the problem of strain design
is raised on Section III. Realism in design appears in Section
IV where the gene expressions are optimized versus growth
rate. Finally, conclusions are drawn in Section V.

II. MODELING FRAMEWORK

A. Context

The model developed in this paper combines a batch
reactor model and a bacterial cell model. The bacterial cell
model is new and corresponds to the dynamical extension
of the model developed in steady-state within the RBA
framework [6], [9]. We then consider that a single bacterial
species is immersed in a bioreactor operating in batch mode,
i.e. with a given and constant volume of medium. The
medium is supposed perfectly stirred and homogeneous.

B. Bacterial cell model

The cell functioning is described by its cell processes.
These processes are composed of chemical reactions, trans-
forming reactants into products. These reactions can be
depicted by their flux: the transformation rate of the reaction.
The flux of process P∗ is denoted ν∗ and its value is
ν̄∗. By convention, ν̄∗ are non negative. In this paper,
we only consider the main cell processes, PM for which
compounds are transformed under the action of catalytic
species (including transport). We also include the production
processes of catalytic species, PE , that is to say gene
expression processes, from gene to proteins. These processes
are known to be the biggest energy and resource expenses in
cell. Moreover, as presented in [5], the balance between these
processes is known to limit the cell growth and force the
cell to make choices and spare resource. All these processes
are catalyzed by enzymes or macromolecules complexes,
as e.g. ribosomes. These compounds catalyzing reactions
are gathered in the set E . The set of other compounds,
reactants and products of processes PM , is denoted M .
By convention, we assume that every process (element of
PM of PE ) is catalyzed by one and only one element
of E . Nonetheless, an element of E can catalyze multiple
processes. The concentrations of elements of E (resp. M )
with respect to cell volume are gathered in vector E (resp.
M).

The differential equations associated to M and E are given
by: {

Ṁ(t) = Ων̄M(t)+ΩE ν̄E(t)−µ(t)M(t)
Ė(t) = ν̄E(t)−µ(t)E(t) (1)

where element Ωi, j (resp. ΩE
i, j) of matrix Ω (resp. ΩE ) is

the algebraic number of metabolite Mi produced, if positive,
or consumed, if negative, by flux νM, j (resp. νE, j). Factors
−µM and −µE take into account the effects due to cell
volume increase, where µ is the bacterial specific growth
rate (see below).

As in RBA [9], enzymes and elements of E are supposed to
have limited efficiency. Then, for each element Ei of E :

∑
P j∈P

δi, jν̄ j(t)≤ ki(t)Ei(t) (2)

where ki(t) is the efficiency of element Ei and where δi, j =
1 if process P j is catalyzed by Ei, otherwise, δi, j = 0.
By biochemical knowledge, the efficiency of an enzyme
depends on the concentration of the reactants and products
of the reaction, leading to: ki(t) = ki(M(t)). Constraint (2) is
rewritten in a more compact way as

∆

[
ν̄M(t)
ν̄E(t)

]
≤ diag[kM(t)]E(t) (3)

where ∆ = (δi, j)i, j is a suitable matrix.
A subset of M are macrocomponents whose concentration

is known to be constant in the cell, e.g. cell wall and
membrane components. Denoting Mc this set of elements
and Mc their concentrations, it comes:

Ṁc(t) = Ωcν̄M(t)+Ω
E
c ν̄E(t)−µ(t)Mc = 0 (4)

where Ωc (resp. ΩE
c ) is the submatrix of Ω (resp. ΩE )

corresponding to elements of Mc. The relative complement
of Mc in M , Mi = M \Mc, gathers the elements with non
zero dynamics. Their concentrations are gathered in Mi.

It remains to introduce an essential constraint of RBA,
the so-called density constraint. Indeed, Kubitshek in [14]
revealed that cell density D0 is constant through different
growth conditions and also along the cell cycle of bacteria as
Escherichia coli or Bacillus subtilis. That leads, as in [15], to
define a density D0, related to the protein components from
E , by such a relation

D0 = ∑
E

`EiEi(t) (5)

where `Ei corresponds to the number of amino-acids (or an
equivalent) in the protein Ei. Finally, in order to keep the
density constant, and with Ei dynamics given by (1) the
bacterial cell volume is increasing when new proteins are
produced and thus is given by

µ(t) =
1

D0
`T

ν̄E(t). (6)

where ` is a vector containing the number of amino-acids of
each element of E .

Finally, the constraint of the density implies that the time
evolution of the bacterial population concentration in mass
in the bioreactor, denoted X , is given by:

Ẋ(t) = µ(t)X(t) (7)

C. External reactor dynamics

We conclude by writing the dynamics for bioreactor
components, denoted Me (both produced and consumed by
the cells in extracellular medium) whose concentrations, Me,
are expressed versus bioreactor volume. They are given by
multiplying flux per unit of cell by biomass concentration in
bioreactor:

Ṁe(t) = Ωeν̄M(t)X(t) (8)



where Ωei, j is the number of Mei produced (consumed if
negative) by reaction νM j.

D. The full model

The ODE and constraints describing the cell and the
bioreactor are given by:

Ṁi(t) = Ωiν̄M(t)+ΩE
i ν̄E(t)−Mi(t)µ(t)

Ė(t) = ν̄E(t)−E(t)µ(t)
Ṁe(t) = Ωeν̄M(t)X(t)
Ẋ(t) = µ(t)X(t)

(9)

w.r.t.



Ωcν̄M(t)+ΩE
c ν̄E(t)−Mcµ(t) = 0

µ(t) = 1
D0

`T ν̄E(t)

∆

[
ν̄M(t)
ν̄E(t)

]
≤ diag[kM(t)]E(t)

ν̄E , ν̄M,Mi,E,Me,X ≥ 0

(10)

Substituting µ by its linear expression (6) in terms of ν̄E in
(9) and (10) and with ν̄ = [ν̄T

E , ν̄
T
M]T , dim(ν̄)=m×1, and x=

[MT
i ,E

T ,MT
e ,X ]T , dim(x) = n×1, dynamics and constraints

can be expressed as:

ẋ(t) = Φ(x(t))ν̄(t)

w.r.t.

∣∣∣∣∣∣
Lν̄(t) = 0
∆ν̄(t)≤Ψ(x(t))
ν̄(t),x(t)≥ 0

(11)

with dim(Φ(x))= n×m, dim(L)= |Mc|×m, dim(∆)= |E |×
m, dim(Ψ(x)) = |E |×1.

With an equivalent of the genome-scale model developed
in [10], |E | would equal several hundreds, as for m and n
(maybe several thousands). Clearly, the point is not to solve
that problem at this scale, for the moment.

E. Simplified seven-process model

In the sequel, we derived a simplified model from the
above general framework that contains the minimal key
ingredients for the rational design of a strain dedicated to the
production of a compound of interest. Indeed, as expressed
in introduction, the objective of this paper is not to propose
a design on hundreds of genes, but to give the essence of
a strain design with realistic biological constraints. In this
simplified model, we consider only one substrate, denoted
G (like Glucose), within the bioreactor. The substrate G
is imported and transformed by the process PT into an
intracellular substrate S . The substrate S is used by process
PB to produce a macro-component B whose concentration
shall remain equal to B0. S is also used by the process
PP to produce and secrete a product of interest P into
the culture medium. Finally, S is also the elementary brick
that is used by the non-metabolic processes PE , divided
in four gene expression processes PET , PEB , PEP , PER ,
respectively building up ET , EB, EP and ER, which are the
catalyzing compounds for processes PT , PB, PP, and the
whole PE , respectively.

Following the formalism of the previous section, we have:
Mi = [S], Mc = [B], Me = [G,P]T , E = [ET ,EB,EP,ER]

T ,
ν̄M = [ν̄T , ν̄B, ν̄P, ]

T , ν̄E = [ν̄ET , ν̄EB , ν̄EP , ν̄ER ]
T . We thus

deduced the matrices Ωi = [1,−1,−1], ΩE
i = [1,1,1,1],

Ωc = [0,1,0], ΩE
c = [0,0,0,0], Ωe =

[
−1 0 0
0 0 1

]
, ` =

[`ET , `EB , `EP , `ER ]
T where `ET (resp. `EB , `EP , `ER ) is the

length in amino acids of compound ET (resp. EB, EP, ER).
Finally, we have

∆ =

(PT :)
(PB :)
(PP :)
(PE :)


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 1 1


and

kM(t) =
[

vm,T G(t)
G(t)+KT+S(t)/KS

,
vm,BS(t)
S(t)+KB

,
vm,PS(t)
S(t)+KP

,
vm,RS(t)
S(t)+KR

]
.

PB and PP are metabolic processes, and kB, kP are assumed
to be two classical Michaelis-Menten-like efficiencies
depending on substrate S . The efficiency of PE , kR, is
also assumed to be a Michaelis-Menten-like efficiency
increasing and saturated by S concentration, in accordance
with [15]. For process PT , we further integrated the cost of
transport of G as a function of the internal concentration S .
The efficiency kT is assumed to follow a Briggs-Haldane
like efficiency law, increasing in G , decreasing in S and
saturated for large values of G . Finally, in each function of
efficiencies, vm,∗ corresponds to the maximal rate of P∗, K∗
corresponds to the Michaelis-Menten constants or inhibition
constants depending on the context.

Representing the whole-cell through only five major cell
processes (PT , PB, PET , PEB , PER ) plus two (PP,
PEP ) dedicated to the production of P is obviously drastic
compared to the 73 cellular processes of the complete model
[10]. However, we can distribute easily all cellular processes
into PT , PB, PE due to the systemic nature of the bacterial
cell. Only the introduction of S has to be discussed with
respect to the RBA framework. Actually, the concentrations
of internal metabolites are known to be globally higher in
rich medium that in poor medium [16]. This leads to increase
globally the efficiency of almost all cell processes in rich
medium compared to poor medium. S was thus introduced
to capture the impact of the medium composition (rich vs.
poor) on process efficiencies.

III. OPEN-LOOP OPTIMAL CONTROL

In this section we firstly define the criteria that has to
be maximized, then recall some results guaranteeing the
existence of a maximum and its associated open-loop optimal
control and thus a way to compute it. The main interest of
this first design is to provide an upper limit of the achievable
criteria.

A. Criterion

The maximization of production can be formulated in
various ways. The final quantity or concentration of product



of interest is the most natural criterion, but the time necessary
to obtain this maximal quantity is also an essential issue.
A compromise between product quantity and time of the
process has to be found. As suggested in [17], a solution
could be to find the Pareto front of maximum final quantity
of product versus culture duration. In view of our goal,
we consider another compromise as in [18], defining the
criterion as the ratio between the concentration of the product
at the final time over the culture duration. If x j is the
concentration of the product of interest in vector x, criterion
to maximize would be J =

x j(t f )

t f
, where by definition t f > 0

is the final time.

B. Optimization problem formulation

The problem of strain design for maximizing a product
of interest can be formulated in a compact way as a Mayer
optimization problem:

max
ν̄ ,t f

J(x(t f ), t f ) =
1
t f

cT x(t f )

with respect to


Dynamics (9) : ẋ(t) = Φ(x(t))ν̄(t)

Constraints (10) :

∣∣∣∣∣∣
Lν̄(t) = 0
∆ν̄(t)≤Ψ(x(t))
ν̄(t),x(t)≥ 0

(x(t0), t0) ∈ Z0, (x(t f ), t f ) ∈ Z f
(12)

where c is the vector of cost for each compound (typically,
all zero except 1 for the index of the compound of interest),
Z0 and Z f are defined as initial and final suitable state sets,
in particular t f ≥ ε > 0 is part of Z f definition.
Notice that the formulation is exactly the same, no matter is
the type of the compound of interest: it can be indifferently
biomass, protein, intra- or extracellular metabolite.

C. Existence of the open-loop optimal control & necessary
conditions

Let us define Π(x) = {ν̄ ∈ Rm
+|Lν̄ = 0,∆ν̄ ≤ Ψ(x)} and

N(x) = {Φ(x)ν̄ |ν̄ ∈Π(x)}. By construction, it is possible to
prove that Ψ(x(t)) is necessarily bounded and the constraints
defining Π(x) for a given x are then linear constraints.
Consequently the set Π(x) is necessarily a convex set. The
convexity of Π(x) implies the one of N(x). In our case, it is
a simple exercise to show that the set of feasible trajectories
is not empty, that x, ν̄ and t f are necessarily all bounded.
Following these preliminary elements, the classic Filippov’s
existence theorem can be invoked in order to prove that the
optimal control problem has a solution (see e.g. [19][Chapter
4.3 in particular] or [20] and [21]. We then know that
there exists necessarily an optimal triple {t∗f ,x∗(t), ν̄∗(t)} for
problem (12) with ν̄∗ measurable.
In order to compute an open-loop optimal control input, it
is then classical to invoke the Pontryagin’s maximum prin-
ciple. However, our optimal control problem defined by (12)
corresponds to a so-called mixed state-control constraint.
Indeed, for a given x, the set of input values has to belong to
Π(x). In this context, the maximum principle is replaced by
more advanced conditions such as the ones associated to a
Mayer problem where the dynamics of the system is defined

by a nonlinear differential inclusion (see e.g. [22], [23]). If
we further assume that the optimal input has some suitable
continuity property, more classic conditions can be obtained
such as the ones derived for instance in [21]. In view of
our goal, we do not detailed further this advanced aspect
on optimization. We only emphasize here the necessity to
choose a numerical scheme that can handle specificities of
mixed-control-state constraints (we refer readers to [24] for
a complete and clear presentation of this general issue and
possible remedies).

D. Numerical resolution for the simplified seven-process
model

We thus use Bocop [25] to numerically solve the optimal
problem defined by (12). This open-source toolbox converts
the infinite dimensional optimal control problem into a
finite dimensional non-linear optimization problem by time-
discretization on state and control variables, i.e. the so-called
direct transcription approach, see [24] for details. Following
the discretization of the initial problem, the following non-
linear optimal problem is defined:

max
X∈R(n+m)×N+1

F(X),

w.r.t. C(X)≥ 0
(13)

with X= {{xi, ν̄i}i∈{1,...,N}, t f } ∈R(n+m)×N+1, where N is the
number of discretization points, n the dimension of x, m the
dimension of ν̄ . Finally, C(X) ≥ 0 sums up the set of all
the constraints, including equality constraints. It thus takes
into account all constraints associated to the discretization of
system dynamics, i.e. xi+1 = xi+

t f−ti
N Φ(xi)ν̄i ; the inequality

constrains on inputs at each time points, i.e. Lν̄i = 0 ; ∆ν̄i ≤
Ψ(xi) ; ν̄i ≥ 0; xi ≥ 0; and finally integrates the boundary
constraints, i.e. (x0, t0)∈ Z0 and (xN , t f )∈ Z f . This nonlinear
optimal problem is then solved by Bocop, see [24], [25].

E. Optimal open-loop control as a reference

Parameters are chosen in accordance with RBA approach
[10] with initial and final conditions, corresponding to
sets Z0 and Z f in (12): G(ti) = 10mmol.L−1, P(ti) = 0,
X(ti) = 4.5mg.L−1, `T E(ti) = D0 = 2.51mmol.g−1

CDW , S(ti) =
1µmol.g−1

CDW , B(ti) = 2µmol.g−1
CDW , G(t f ) = 0, t f ≥ ε , where

gCDW stands for gram of cell dry weight.
The time evolution of the main variables, obtained by the

resolution of (13) with above initial conditions, are given in
Fig 1. The numerical optimal trajectory presents three main
phases:
(i) Proteins are first allocated towards biomass synthesis

only: cells grow at constant growth rate, without produc-
tion of P . ν̄EP is null. A balanced exponential regime
is recovered.

(ii) Cell mass increases linearly while the protein repartition
is switching towards the synthesis pathway of product of
interest. The growth is decreasing, reflecting the arrest
of the synthesis of proteins within processes linked to
growth: ν̄EB and ν̄ER are null.

(iii) The production of all proteins stops leading to a last
phase in which the production is at its maximum, with



few EB and ER. Compared to phase (i), the repartition
of proteins shows that EP has replaced EB.

We obtained an optimal production strategy using our
seven-process model that is close to a standard bang-bang
politics [2]. We already obtain an optimal control profile
that is realistic from the biological point of view. Indeed, the
optimal profile integrates explicitly the time necessary (i.e. a
transition phase) to build all cellular components required for
the production of P . This is due to the operating constraints
that we integrated into our optimization problem. They
prevent to switch instantaneously from the configuration of
biomass production to the one of P production.

IV. CONSTRAINTS IMPLIED BY BIOLOGICAL
IMPLEMENTATION

A. Motivation for a growth rate dependent gene expression

Here we introduce in the design optimization problem the
constraints related to the biological ‘implementation’ of the
designed laws. At a laboratory scale, gene expression can
be controlled through external signals such as a given and
defined metabolite. However, the number of such signals is
very low. Moreover, using external signals imposes strong
constraints on the bioreactors operating at the industrial scale
(i.e. a volume of a few hundred liters typically, even more),
and can be very costly. Using the internal genetic regulatory
mechanisms of the cell should thus be more suitable. This
seems achievable today.

Indeed, the major principles governing the bacterial gene
expressions are now better understood and biologically char-
acterized. The genetic regulatory network (e.g. transcription
factors, etc.) is now widely identified for bacteria such as
E. coli or B. subtilis. Moreover, in addition to these regu-
latory mechanisms, bacteria have a class of specific genes,
called constitutive, without any known genetic regulation.
The evolution of the expression of each constitutive gene
is specific and growth rate dependent. The growth rate
dependent regulation is mainly achieved at the level of the
initiation rate of gene transcription, see e.g. [26], [27] and of
messenger translation, see e.g. [28]. Consequently, we have
theoretically access to a large well-characterized set of gene
expression profiles (as functions of cell growth rate).

B. Problem formulation

The objective is to have only a few number of processes
that are controlled from an external signal and the majority
of the processes that are controlled using internal regulatory
mechanisms of the cell, in particular through a growth
controlled gene expression. Let Pµ the set of processes
that shall be controlled by growth, and νµ the associated
fluxes. Then, the problem is the same as in Section III
with additional constraints on ν̄µ for growth dependency:
ν̄E(t) = ν̄E(µ(t)).

From the regular shape of the curves presented in [27],
[28], it seems reasonnable to approximate ν̄E(µ) functions
by polynomial expressions: ν̄E(µ) = ∑

d
1 ukµk, where uk are

polynomial coefficients and d the degree of polynomials.

Note that from (6) and as ν̄E ≥ 0, u0 = 0. This leads to
the implementation constraint :

ν̄Ei(t) =
d

∑
k=1

ui,kµ(t)k,∀νEi ∈ νµ (14)

By adding the u coefficients in the optimization variables,
the new mixed-control-state constraints are fully handled
by Bocop. By abuse of notation, this kind of optimization
problem are called closed-loop optimization problem in the
sequel.

TABLE I
COMPARISON OF OPTIMALITY INDEXES FOR OPEN-LOOP OPTIMIZATION

(OL), AND CLOSED-LOOP OPTIMIZATION (CL) CASES A AND B

OL CL Case A CL Case B
J = P(t f )/t f (in mmol.L−1.h−1) 0.38 0.35 0.31

P(t f ) (in mmol.L−1) 2.3 2.2 2.3
t f (in h) 6.1 6.3 7.4

C. Solution for the seven-process model
1) Case A (Full design): In the simplified seven-process

model, the three non-metabolic processes are supposed to
be growth controlled, Pµ = {PEP ,PEB ,PET }. We choose
d = 3 for simplicity. Solution of this close-loop problem A is
depicted in blue in Fig. 1. Macroscopic quantities as biomass
concentration X , growth rate µ and product concentration P
are much more regular but remain very close to the open-
loop optimal solution. Moreover, the final concentrations of
P are also very close, see Tab. I. This suggests that the
loss of optimality is reasonable compared to the fact that no
process is controlled by an external signal.

2) Case B (Rational design): In Case A, we assumed that
all genes in the bacterium are somehow re-adjusted/retuned.
Here, we can realistically assume that the evolution of protein
concentrations dedicated to the production of the biomass,
i.e. EB, follows a linear law with respect to µ , i.e. EB =
αBµ . With quasi-steady state assumption on EB dynamics
(i.e. ĖB(t) = 0), it comes: ν̄EB(t) = αBµ(t)2, where αB is
assumed to be a known parameter.

We furthermore assume that the evolution of protein
concentrations dedicated to the production pathway EP are
also linear in µ . Their gene expressions thus follow a
quadratic law, i.e. ν̄EP(t) = uPµ(t)2 where the coefficient
uP is then a parameter to be optimized. In addition to this
quadratic formulation, we introduce an external time control
that activates the expression of genes associated to PEP ,
thus mimicking the activation of PEP gene expression by a
transcription factor sensitive to an extracellular signal. This
control signal, ε(t), is binary and can switch once and only
once at time ts: ε(t) = 0 for t ≤ ts, ε(t) = 1 for t > ts. Gene
expression of EP is then given by:

ν̄EP(t) = uPµ(t)2
ε(t) (15)

with coefficient uP and switching time ts to be determined.
We finally assume that processes PT and PR are adapted

in agreement to the demand and thus ν̄ET and ν̄ER are
assumed to be free variables with respect to the growth rate.



Numerical solution is obtained by Bocop and is presented
on Fig. 1 We obtain the same three phases (growth, transition,
production) as in the open-loop case. The sharpness of µ(t)
is due to the switch occurring at ts = 1.85h.
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Fig. 1. Evolution of variables for the open-loop optimization problem, in
red. Results for close-loop optimization problem case A, in blue. Results
for close-loop optimization problem case B, in green.

V. CONCLUSIONS

To conclude, we introduced in this paper a first step
towards an integrated strain design in batch bioprocess. We
investigated the question of the biological implementation of
optimal control. We showed that the closed-loop implemen-
tation of the optimal control using the growth rate depen-
dency of gene expression slightly degraded the performance
obtained through an open-loop optimal control. Finally, we
emphasize through a simple example that the procedure of
strain design can integrate the existing regulatory network of
the cell in order to minimize as much as possible the number
of genome modifications.
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