A. P. Ramirez, Oxide electronics emerge, Science, vol.315, p.1377, 2007.

A. Tsukazaki, Quantum hall effect in polar oxide heterostructures, Science, vol.315, p.1388, 2007.

E. Dagotto, Complexity in strongly correlated electronic systems, Science, vol.309, p.257, 2005.

A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO 3 /SrTiO 3 heterointerface, Nature, vol.427, p.423, 2004.

J. Mannhart and D. G. Schlom, Oxide interfaces-an opportunity for electronics, Science, vol.327, p.1607, 2010.

M. Uchida and M. Kawasaki, Topological properties and functionalities in oxide thin films and interfaces, J. Phys. D: Appl. Phys, vol.51, p.143001, 2018.

M. Lorenz, The2016 oxide electronic materials and oxide interfaces roadmap, J. Phys. D: Appl. Phys, vol.49, issue.433001, pp.1-53, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02118554

A. P. Malozemoff, J. Mannhart, and D. Scalapino, High-temperature cuprate superconductors get to work, Phys. Today, vol.4, pp.41-47, 2005.

K. Z. Rushchanskii, S. Kamba, V. Goian, P. Vanek, M. Savinov et al., A multiferroic material to search for the permanent electric dipole moment of the electron, Nat. Mater, vol.9, pp.649-654, 2010.

S. Eckel, A. O. Sushkov, and S. K. Lamoreaux, Limit on the electron electric dipole moment using paramagnetic ferroelectric Eu 0,5 Ba 0,5 TiO 3, Phys. Rev. Lett, vol.109, p.193003, 2012.

T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran et al., Magnetic coulomb phase in the spin ice Ho 2 Ti 2 O 7, Science, vol.326, pp.415-417, 2009.

D. J. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo et al., Dirac strings and magnetic monopoles in the spin ice Dy 2 Ti 2 O 7, Science, vol.326, pp.411-414, 2009.

J. Mannhart, H. Boschker, T. Kopp, and R. Valenti, Artificial atoms based on correlated materials, Rep. Prog. Phys, vol.79, p.84508, 2016.

M. Faraday, Experimental researches in electricity, Fourth Series, Phil. Trans. R. Soc. Lond, vol.123, pp.507-522, 1833.

R. Landauer, Advanced technology and truth in advertising, Physica A, vol.168, pp.75-87, 1990.

H. Kroemer, Nobel lecture: quasielectric fields and band offsets: teaching electrons new tricks, vol.73, pp.783-793, 2001.

J. Mannhart and D. G. Schlom, Oxide -Tausendsassas für die Elek-tronik, Phys. J, vol.4, pp.45-51, 2005.

H. Boschker and J. Mannhart, Quantum-matter heterostructures, Annu. Rev. Condens. Matter Phys, vol.8, pp.145-164, 2017.

J. Hulliger, M. Awan, B. Trusch, and T. A. Samtleben, Chemical diversity in view of property generation by a new combinatorial approach, Z. Anorg. Allg. Chem, vol.631, pp.1255-1260, 2005.

K. Lejaeghere, Reproducibility in density functional theory calculations of solids, Science, vol.351, p.1415, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01849842

G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Towards an exact description of electronic wavefunctions in real solids, Nature, vol.493, pp.365-370, 2013.

D. Vollhardt, K. Byczuk, M. Kollar, and A. , Theoretical Methods for Strongly Correlated Systems, Chapter, p.4833, 1109.

M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys, vol.70, p.1039, 1998.

J. P. Leblanc, Solutions of the two-dimensional hubbard model: benchmarks and results from a wide range of numerical algorithms, Phys. Rev. X, p.41041, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02363985

S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, Pre-dicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett, vol.91, p.135503, 2003.

S. Kirklin, The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies, NPJ Comput. Mater, vol.1, p.15010, 2015.

, More info about the Nomad Project can be

N. Nosengo, Machine-learning techniques could revolutionize how materials science is done, Nature, vol.22, p.533, 2016.

C. Yee, T. Birol, and G. Kotliar, Guided design of copper oxysulfide superconductors, EPL, vol.111, p.17002, 2015.

C. Weber, C. Yee, K. Haule, and G. Kotliar, Scaling of the transition temperature of hole-doped cuprate superconductors with the charge-transfer energy, EPL, vol.100, p.37001, 2012.

D. E. Nikonov and I. A. Young, Benchmarking of beyond-CMOS exploratory devices for Fig. 59. Cross-sectional TEM iage of ?-Ga 2 O 3 on sapphire with quasi-alloy buffer layers, vol.910

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

, logic integrated circuits, IEEE J. Exploratory Solid-State Comput. Dev. Circ, vol.1, p.3, 2015.

A. Hirohata and K. Takanashi, Future perspectives for spintronic devices, J. Phys. D: Appl. Phys, vol.47, p.193001, 2014.

H. Ebert, The Munich SPR-KKR package

H. Ebert, D. Ködderitzsch, and J. Minàr, Calculating condensed matter properties using the KKR-Green's function method-recent developments and applications, Rep. Prog. Phys, vol.74, p.96501, 2011.

J. Balluff, K. Diekmann, G. Reiss, and M. Meinert, High-throughput screening for antiferromagnetic Heusler compounds using density functional theory, Phys. Rev. Mat, vol.1, p.34404, 2017.

E. Lesne, Y. Fu, S. Oyarzun, J. C. Rojas-sánchez, D. C. Vaz et al., Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces, Nat. Mater, vol.15, p.1261, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01614031

S. Okamoto and A. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator, Nature, vol.428, p.630, 2004.

D. Stornaiuolo, C. Cantoni, G. M. De-luca, R. D. Capua, E. Di et al., Tunable spin polarization and superconductivity in engineered oxide interfaces, Nat. Mater, vol.15, p.278, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01296509

R. Arras and L. Calmels, Fully spin-polarized two-dimensional electron gas at the CoFe 2 O 4 /MgAl 2 O 4 (001) polar interface, Phys. Rev. B, vol.90, p.45411, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01718311

M. Osada and T. Sasaki, Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks, Adv. Mater, vol.24, p.210, 2012.

R. Mas-ballesté, C. Gómez-navarro, J. Gómez-herrero, and F. Zamora, 2D materials: to graphene and beyond, vol.3, p.20, 2011.

K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter et al., Application of 2D non-graphene mMaterials and 2D oxide nanostructures for biosensing technology, Sensors, vol.16, p.223, 2016.

K. Yang, S. Nazir, M. Behtash, and J. Cheng, High-throughput design of two-dimensional electron gas systems based on polar/nonpolar perovskite oxide heterostructures, Scientific Reports, vol.6, p.34667, 2016.

J. E. Moore, The birth of topological insulators, Nature, vol.464, p.194, 2010.

M. Z. Hasan and C. L. Kane, Colloquium: topological insulators, vol.82, p.3045, 2010.

A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normalsuperconducting hybrid structures, Phys. Rev. B, vol.55, p.1142, 1997.

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun, vol.2, p.596, 2011.

J. L. Lado, V. Pardo, and D. Baldomir, SrTiO 3 ) 7 /(SrIrO 3 ) 2 and (KTaO 3 ) 7 /(KPtO 3 ) 2 multilayers, Phys. Rev. B, vol.88, issue.111, p.155119, 2013.

X. Hu, Z. Zhong, and G. A. Fiete, First principles prediction of topological phases in thin films of pyrochlore iridates, Scientific Reports, vol.5, p.11072, 2015.

L. Si, O. Janson, G. Li, Z. Zhong, Z. Liao et al., Quantum anomalous Hall state in ferromagnetic SrRuO 3 (111) Bilayers, Phys. Rev. Lett, vol.119, p.26402, 2017.

H. Guo, S. Gangopadhyay, O. Köksal, R. Pentcheva, and W. E. Pickett, Wide gap Chern Mott insulating phases achieved by design, NPJ Quantum Materials, vol.2, p.4, 2017.

X. Liu, S. Middey, Y. Cao, M. Kareev, and J. Chakhalian, Geometrical lattice engineering of complex oxide heterostructures: a designer approach to emergent quantum states, MRS Communication, vol.6, p.133, 2016.

J. Maciejko and G. A. Fiete, Fractionalized topological insulators, Nat. Phys, vol.11, p.385, 2015.

D. Dijkkamp, Appl. Phys. Lett, vol.51, pp.619-621, 1987.

J. S. Horwitz, Appl. Phys. Lett, vol.59, pp.1565-1567, 1991.

G. Koster, Rev. Mod. Phys, vol.84, pp.253-298, 2012.

D. M. Nguyen, Sci. Adv. Mater, vol.6, pp.243-251, 2014.

. Chanthbouala, A ferroelectric memristor 11, pp.860-864, 2012.

S. Gariglio, Appl. Phys. Lett. Mater, vol.4, p.60701, 2016.

D. Kan, Nat. Mater, vol.15, pp.432-437, 2016.

Z. Liao, Nature Mater, vol.15, p.425, 2016.

U. K. Bhaskar, Nature Nanotechnol, vol.11, p.263, 2016.

A. A. Demkov and A. B. Posadas, Integration of functional oxides with semiconductors, 2014.

L. Li, Advanced Materials interfaces, vol.324, pp.1700921-1700928, 2017.

S. Amoruso, J. Appl. Phys, vol.100, p.13302, 2006.

S. Wicklein, Appl. Phys. Lett, vol.101, p.131601, 2012.

R. Groenen, Appl. Phys. Lett. Mater, vol.3, p.70701, 2015.

K. Orsel, J. Inst, vol.8, pp.10021-10021, 2013.

K. Orsel, Appl. Phys. Lett. Mater, vol.3, p.106103, 2015.

D. G. Schlom, Perspective: Oxide molecular-beam epitaxy rocks!, APL Mater, vol.3, p.62403, 2015.

J. Falson and M. Kawasaki, A review of the quantum Hall effects in MgZnO/ZnO heterostructures, Rep. Prog. Phys, vol.81, p.56501, 2018.

T. A. Cain, A. P. Kajdos, and S. Stemmer, La-doped SrTiO 3 films with large cryogenic thermoelectric power factors, Appl. Phys. Lett, vol.102, p.182101, 2013.

H. Paik, Z. Chen, E. Lochocki, A. Seidner, A. Verma et al., Adsorption-controlled growth of La-doped BaSnO 3 by molecular-beam epitaxy, APL Mater, vol.5, p.116107, 2018.

Y. Matsubara, M. S. Bahramy, Y. Kozuka, D. Maryenko, J. Falson et al., Observation of the quantum Hall effect in ?-doped SrTiO 3, Nat. Commun, vol.7, p.11631, 2016.

J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka et al., Even-denominator fractional quantum Hall physics in ZnO, Nat. Phys, vol.11, pp.347-351, 2015.

J. A. Moyer, C. Eaton, and R. Engel-herbert, Highly conductive SrVO 3 as a bottom electrode for functional perovskite oxides, Adv. Mater, vol.25, pp.3578-3582, 2013.

H. P. Nair, Y. Liu, J. P. Ruf, N. J. Schreiber, S. Shang et al., Synthesis science of SrRuO 3 and CaRuO 3 epitaxial films with high residual resistivity ratios, APL Mater, vol.6, p.46101, 2018.

H. P. Nair, J. P. Ruf, N. J. Schreiber, L. Miao, M. L. Grandon et al., Demystifying the growth of superconducting Sr 2 RuO 4 thin films, APL Mater, vol.6, p.101108, 2018.

E. S. Machlin and P. Chaudhari, Theory of 'Pseudomorphic stabilization' of metastable phases in thin film form, Synthesis and Properties of Metastable Phases, pp.11-29, 1980.

L. Pauling, The principles determining the structure of com-plex ionic crystals, J. Am. Chem. Soc, vol.51, pp.1010-1026, 1929.

M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li et al., A ferroelectric oxide made directly on silicon, Science, vol.324, pp.367-370, 2009.

J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche et al., Room-temperature ferroelectricity in strained SrTiO 3, Nature, vol.430, pp.758-761, 2004.

D. G. Schlom, L. Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller et al., Elastic strain engineering of ferroic oxides, MRS Bull, vol.39, pp.118-130, 2014.

J. A. Mundy, C. M. Brooks, M. E. Holtz, J. A. Moyer, H. Das et al., Atomically engineered ferroic layers yield a roomtemperature magnetoelectric multiferroic, Nature, vol.537, pp.523-527, 2016.

M. P. Warusawithana, E. V. Colla, J. N. Eckstein, and M. B. Weissman, Artificial dielectric superlattices with broken inversion symmetry, Phys. Rev. Lett, vol.90, p.36802, 2003.

R. B. Comes, S. R. Spurgeon, S. M. Heald, D. M. Kepaptsoglou, L. Jones et al., Interface-induced polarization in SrTiO 3 -LaCrO 3 Superlattices, Adv. Mater. Int, vol.3, p.1500779, 2016.

B. B. Nelson-cheeseman, H. Zhou, P. V. Balachandran, G. Fabbris, J. Hoffman et al., Polar cation ordering: a route to introducing > 10% bond strain into layered oxide films, Adv. Funct. Mater, vol.24, pp.6884-6891, 2014.

R. Mishra, Y. Kim, J. Salafranca, S. K. Kim, S. H. Chang et al., Oxygen-vacancy-induced polar behavior in (LaFeO 3 ) 2 /(SrFeO 3 ) superlattices, Nano Lett, vol.14, pp.2694-2701, 2014.

J. Young, E. J. Moon, D. Mukherjee, G. Stone, V. Gopalan et al., Polar oxides without inversion symmetry through vacancy and chemical order, J. Am. Chem. Soc, vol.139, pp.2833-2841, 2017.

A. Damascelli, Z. Hussain, and Z. Shen, Angle-resolved photoe-mission studies of the cuprate superconductors, Rev. Mod. Phys, vol.75, pp.473-541, 2003.

K. Fujita, M. Hamidian, I. Firmo, S. Mukhopadhyay, C. K. Kim et al., Spectroscopic imaging STM: atomic-scale visualization of electronic structure and symmetry in underdoped cuprates, Springer Series in Solid-State Sciences, vol.180, pp.73-109, 2014.

E. J. Monkman, C. Adamo, J. A. Mundy, D. E. Shai, J. W. Harter et al., Quantum many-body interactions in digital oxide superlattices, vol.11, pp.855-859, 2012.

J. M. Rondinelli and S. J. May, Oxide interfaces: Instrumental insights, Nat. Mater, vol.11, pp.833-834, 2012.

D. E. Shai, A. J. Melville, J. W. Harter, E. J. Monkman, D. W. Shen et al., Temperature dependence of the electronic structure and Fermi-surface reconstruction of Eu 1-x Gd x O through the ferromagnetic metal-insulator transition, Phys. Rev. Lett, vol.108, p.267003, 2012.

J. W. Harter, L. Maritato, D. E. Shai, E. J. Monkman, Y. F. Nie et al., Nodeless superconducting phase arising from a strong (?,?) antiferromagnetic phase in the infinitelayer electron-doped Sr 1-x La x CuO 2 compound, Phys. Rev. Lett, vol.109, p.267001, 2012.

P. D. King, H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo et al., Atomic-scale control of competing electronic phases in ultrathin LaNiO 3, Nat. Nan-otechnol, vol.9, pp.443-447, 2014.

B. Burganov, C. Adamo, A. Mulder, M. Uchida, P. D. King et al., Strain control of fermiology and many-body interactions in two-dimensional ruthenates, Phys. Rev. Lett, vol.116, 2016.

A. Steppke, L. Zhao, M. E. Barber, T. Scaffidi, F. Jerzembeck et al., Strong peak in T c of Sr 2 RuO 4 under uniaxial pressure, Science, vol.355, p.9398, 2017.

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

Y. Hsu, W. Cho, A. F. Rebola, B. Burganov, C. Adamo et al., Manipulating superconductivity in ruthenates through Fermi surface engineering, Phys. Rev. B, vol.94, p.45118, 2016.

Y. F. Nie, Y. Zhu, C. Lee, L. F. Kourkoutis, J. A. Mundy et al., Atomically precise interfaces from nonstoichiometric deposition, Nat. Commun, vol.5, p.4530, 2014.

J. H. Lee, G. Luo, I. C. Tung, S. H. Chang, Z. Luo et al., Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy, Nat. Mater, vol.13, pp.879-883, 2014.

, See ?www.paradim.org? for details on a new national user facility dedicated to accelerating the rate of discovery of materials for the next generation of electronics-the Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials

R. S. Devan, R. A. Patil, J. Lin, and Y. Ma, One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications, Adv. Func. Mater, vol.22, p.3326, 2012.

A. N. Hattori, Y. Fujiwara, K. Fujiwara, T. V. Nguyen, T. Nakamura et al., Identification of giant mott phase transition of single electric nanodomain in manganite nanowall wire, Nano Lett, vol.15, pp.4322-4328, 2015.

S. Jesse, Q. He, A. R. Lupini, D. N. Leonard, M. P. Oxley et al., Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic plane precision, Small, vol.11, pp.5895-5900, 2015.

P. Imec, VLSI technology symposium, 2015.

S. Goswami, E. Mulazimoglu, A. M. Monteiro, R. Wölbing, D. Koelle et al., Quantum interference in an interfacial superconductor, Nature Nanotech, vol.11, p.861, 2016.

F. Bi, D. F. Bogorin, C. Cen, C. W. Bark, J. Park et al., Watercycle" mechanism for writing and erasing nanostructures at the LaAlO 3 /SrTiO 3 interface, Appl. Phys. Lett, vol.97, p.173110, 2010.

A. D. Franklin, M. Luisier, S. Han, G. Tulevski, C. M. Breslin et al., Sub-10 nm carbon nanotube transistor, Nano Lett, vol.12, p.758, 2012.

M. Rommel, B. Nilsson, P. Jedrasik, V. Bonanni, A. Dmitriev et al., Sub-10 nm resolution after lift-off using HSQ/PMMA double layer resist, Microelectronic Engineering, vol.110, p.123, 2013.

R. Arpaia, S. Nawaz, F. Lombardi, and T. Bauch, Improved nanopatterning for YBCO nanowires approaching the depairing current, IEEE Trans. Appl. Supercond, vol.23, p.1101505, 2013.

P. Larsson, B. Nilsson, and Z. G. Ivanov, Fabrication and transport measurements of YBa 2 Cu 3 O 7-x nanostructures, J. Vac. Sci. Technol. B, vol.18, pp.25-31, 2000.

P. P. Aurino, A. Kalabukhov, N. Tuzla, E. Olsson, D. Winkler et al., Nanopatterning of the electron gas at the LaAlO 3 / SrTiO 3 interface using low-energy ion beam irradiation, Appl. Phys. Lett, vol.102, 2013.

S. Mathew, A. Annadi, T. K. Chan, T. C. Asmara, D. Zhan et al., Tuning the interface conductivity of LaAlO 3 / SrTiO 3 using ion beams: implications for patterning, ACS Nano, vol.7, pp.10572-10581, 2013.

N. Banerjee, E. P. Houwman, G. Koster, and G. Rijnders, Submicron patterning of epitaxial PbZr 0.52 Ti 0.4 8O 3 heterostructures, Appl. Phys. Lett, vol.102, p.142909, 2013.

T. Harada and A. Tsukazaki, A versatile patterning process based on easily soluble sacrificial bilayers, AIP Advances, vol.7, p.85011, 2017.

C. Cojocaru, R. Nechache, C. Harnagea, A. Pignolet, and F. Rosei, Nanoscale patterning of functional perovskite-type complex oxides by pulsed laser deposition through a nanostencil, Appl. Surf. Sci, vol.256, pp.4777-4783, 2010.

W. Lee, H. Han, A. Lotnyk, M. A. Schubert, M. St-senz et al., Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density, Nature Nanotechnology, vol.3, pp.402-407, 2008.

J. E. Elshof, S. U. Khan, and O. F. Göbel, Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials, J. Eur. Ceram. Soc, vol.30, pp.1555-1577, 2010.

C. Cen, S. Thiel, J. Mannhart, and J. Levy, Oxide nanoelectronics on demand, Science, vol.323, pp.1026-1030, 2009.

K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO 3, Nature Mater, vol.5, pp.312-320, 2006.

H. Du, C. Jia, A. Koehl, J. Barthel, R. Dittmann et al., Nanosized cdonducting filaments formed by atomicscale Defects in redox-based resistive switching memories, Chem. Mater, vol.29, pp.3164-3173, 2017.

J. L. Macmanus-driscoll, Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interfaceinduced functionality in electronic materials, Adv. Funct. Mater, vol.20, pp.2035-2045, 2010.

W. Zhang, M. Fan, L. Li, A. Chen, Q. Su et al., Heterointerface design and strain tuning in epitaxial BiFeO 3 :CoFe 2 O 4 nanocomposite films, Appl. Phys. Lett, vol.107, p.212901, 2015.

S. Jesse, A. Y. Borisevich, J. D. Fowlkes, A. R. Lupini, P. D. Rack et al., Directing matter: toward atomic-scale 3D nanofabrication, ACS Nano, vol.10, pp.5600-5618, 2016.

K. H. Zhang, P. V. Sushko, R. Colby, Y. Du, M. E. Bowden et al., Reversible nano-structuring of SrCrO 3-? through oxidation and reduction at low temperature, Nature Comms, vol.5, p.4669, 2014.

T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic et al., Domain-wall conduction in ferroelectric BiFeO 3 controlled by accumulation of charged defects, Nature Mater, vol.16, pp.322-328, 2017.

C. Woltmann, T. Harada, H. Boschker, V. Srot, P. A. Van-aken et al., Field-effect transistors with submicrometer gate lengths fabricated from LaAlO 3 /SrTiO 3 -based heterostructures, Phys. Rev. Applied, vol.4, p.64003, 2015.

R. A. Mckee, F. J. Walker, and M. F. Chisholm, Crystalline oxides on silicon: the first five monolayers, Phys. Rev. Lett, vol.81, pp.3014-3017, 1998.

D. G. Schlom and J. H. Haeni, A thermodynamic approach to selecting alternative gate dielectrics, MRS Bull, vol.27, pp.198-204, 2002.

D. K. Fork, B. Fenner, A. N. Connell, J. M. Phillips, and T. H. Geballe, Epitaxial yttriastabilized zirconia on hydrogen-terminated Si by pulsed laser deposition, Appl. Phys. Lett, vol.57, pp.1137-1139, 1990.

D. K. Fork, F. A. Ponce, J. C. Tramontana, and T. H. Geballe, Epitaxial MgO on Si(001) for Y-Ba-Cu-O thin-film growth by pulsed laser deposition, Appl. Phys. Lett, vol.58, pp.2294-2296, 1991.

S. R. Singamaneni, J. T. Prater, and J. Narayan, Multifunctional epitaxial systems on silicon substrates, Appl. Phys. Rev, vol.3, p.31301, 2016.

Z. Jovanovi?, M. Spreitzer, J. Kovac, D. Klement, and D. Suvorov, Silicon surface deoxidation using strontium oxide deposited with the pulsed laser deposition technique, ACS Appl. Mater. Interfaces, vol.20, p.18205, 2014.

L. Tarnawska, A. Giussani, P. Zaumseil, M. A. Schubert, R. Paszkiewicz et al., Single crystalline Sc2O 3 /Y2O 3 heterostructures as novel engineered buffer approach for GaN integration on Si(111), J. Appl. Phys, vol.108, p.63502, 2010.

P. De-coux, R. Bachelet, B. Warot-fonrose, V. Skumryev, L. Lupina et al., Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces, Appl. Phys. Lett, vol.105, p.12401, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01707028

R. Bachelet, P. De-coux, B. Warot-fonrose, V. Skumryev, G. Niu et al., Saint-Girons, F. Sánchez, Functional spinel oxide heterostructures on silicon, CrystEngComm, vol.16, pp.10741-10745, 2014.

D. Akai, M. Yokawa, K. Hirabayashi, K. Matsushita, K. Sawada et al., Ferroelectric properties of sol-gel delivered epitaxial Pb(Zr x ,Ti 1-x )O 3 thin films on Si using epitaxial ?-Al 2 O 3 Lay-ers, Appl. Phys. Lett, vol.86, p.202906, 2005.

L. Qiao and X. Bi, Dielectric response and structure of in-plane ten-sile strained BaTiO 3 thin films grown on the LaNiO 3 buffered Si substrate, Appl. Phys. Lett, vol.92, p.62912, 2008.

D. V. Averyanov, Y. G. Sadofyev, A. M. Tokmachev, A. E. Pri-menko, I. A. Likhachev et al., Direct epitaxial integra-tion of the ferromagnetic semiconductor EuO with silicon for spintronic applications, ACS Appl. Mater. Interfaces, vol.7, pp.6146-6152, 2015.

J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-beigi et al., Crystalline Oxides on silicon, Adv. Mater, vol.22, pp.2919-2938, 2010.

S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das et al., Science, vol.334, pp.958-961, 2011.

M. Dekkers, M. D. Nguyen, R. Steenwelle, P. M. Te-riele, D. H. Blank et al., Ferroelectric properties of epitaxial Pb(Zr, Ti)O 3 thin films on silicon by control of crystal orientation, Appl. Phys. Lett, vol.95, p.12902, 2009.

A. Sambri, S. Gariglio, A. Pardo, J. M. Triscone, O. Stephan et al., Enhanced critical temperature in epitaxial ferroelectric Pb(Zr 0.2 Ti 0.8 )O 3 thin films on silicon, Appl. Phys. Lett, vol.98, p.12903, 2011.

F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O'connor et al., Low-loss BaTiO 3 -Si waveguides for nonlinear integrated photonics, ACS Photonics, vol.3, pp.1698-1703, 2016.

M. Scigaj, N. Dix, I. Fina, R. Bachelet, B. Warot-fonrose et al., Ultra-flat BaTiO 3 epitaxial films on Si(001) with large out-of-plane polarization, Appl. Phys. Lett, vol.102, p.112905, 2013.

M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon et al., Ferroelectricity and antiferroelectricity of doped thin HfO 2 -based films, Adv. Mater, vol.27, pp.1811-1831, 2015.

K. Katayama, T. Shimizu, O. Sakata, T. Shiraishi, S. Nakamura et al., Growth of (111)-oriented epitaxial and textured ferroelectric Y-doped HfO 2 films for downscaled devices, Appl. Phys. Lett, vol.109, p.112901, 2016.

K. D. Fredrickson, P. Ponath, A. B. Posadas, M. R. Mccartney, T. Aoki et al., Atomic and electronic structure of the ferroelectric BaTiO 3 /Ge(001) interface, Appl. Phys. Lett, vol.104, p.242908, 2014.

L. Kornblum, D. P. Fenning, J. Faucher, J. Hwang, A. Boni et al., Solar hydrogen production using epitaxial SrTiO 3 on a GaAs photovoltaic, vol.10, p.377, 2017.

D. H. Blank, M. Dekkers, and G. Rijnders, Pulsed laser deposition in Twente: from research tool towards industrial deposition, j. Phys. D: Appl. Phys, vol.47, p.34006, 2014.

D. Klement, M. Spreitzer, and D. Suvorov, Formation of a strontium buffer layer on Si (001) by pulsed-laser deposition through the Sr/Si (001)(2 × 3) surface reconstruction, Appl. Phys. Lett, vol.106, p.71602, 2015.

D. Diaz-fernandez, M. Spreitzer, T. Parkelj, J. Kova?b, and D. Suvorov, The importance of annealing and stages coverage on the epitaxial growth of complex oxides on silicon by pulsed laser deposition, RSC Advances, vol.7, pp.24709-24717, 2017.

M. Scigaj, C. H. Chao, J. Gázquez, I. Fina, R. Moalla et al.,

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

, Appl. Phys. Lett, vol.109, issue.001, p.122903, 2016.

T. Q. Ngo, A. B. Posadas, M. D. Mcdaniel, C. Hu, J. Bruley et al., Epitaxial c-axis oriented BaTiO 3 thin films on SrTiO 3 -buffered Si(001) by atomic layer deposition, Appl. Phys. Lett, vol.104, p.82910, 2014.

, Ferroelectric-gate field effect transistor memories, Topics in Applied Physics, p.131, 2016.

R. Guo, Z. Wang, S. Zeng, K. Han, L. Huang et al., Functional ferroelectric tunnel junctions on silicon, Sci. Rep, vol.5, p.12576, 2015.

M. Leskelä and M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, vol.409, p.138, 2002.

S. E. Potts and W. M. Kessels, Energy-enhanced atomic layer deposition for more process and pre-cursor versatility, Coord. Chem. Rev, vol.257, p.3254, 2013.

K. H. Yoon, H. Kim, Y. Lee, N. K. Shrestha, and M. M. Sung, UV-enhanced atomic layer deposition of Al 2 O 3 thin films at low temperature for gas-diffusion barriers, RSC Adv, p.5601, 2017.

R. L. Hoye, D. Munoz-rojas, S. F. Nelson, A. Illiberi, P. Poodt et al., Research Update: Atmo-spheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices, APL Materials, vol.3, issue.4, 2015.

V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, Crys-tallinity of inorganic films grown by atomic layer deposition: Overview and general trends, J. Appl. Phys, vol.113, p.21301, 2013.

N. P. Dasgupta, H. Lee, S. F. Bent, and P. Weiss, Recent advances in atomic layer deposition, Chem. Mater, vol.28, p.1943, 2016.

J. R. Martínez-castelo, J. López, D. Domínguez, E. Murillo, R. Machorro et al., Structural and electrical characterization of multilayer Al 2 O 3 /ZnO nanolami-nates grown by atomic layer deposition, Mater. Sci. Semicond. Process, vol.71, p.290, 2017.

M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen et al., Atomic layer deposition of lithium containing thin films, J. Mater. Chem, vol.19, p.8767, 2009.

E. Østreng, H. H. Sønsteby, S. Øien, O. Nilsen, and H. Fjellvåg, Atomic layer deposition of sodium and potassium oxides: evaluation of precursors and deposition of thin films, Dalton Trans, vol.43, p.16666, 2014.

H. H. Sønsteby, O. Nilsen, and H. Fjellfåg, Atomic layer deposition of (K,Na)(Nb,Ta)O 3 thin films, J. Vac. Sci. Technol. A, vol.34, p.41508, 2016.

H. H. Sønsteby, K. Weibye, J. E. Bratvold, and O. Nilsen, Rubidium containing thin films by atomic layer deposition, vol.46, p.16139, 2017.

C. Marichy and N. Pinna, Atomic layer deposition to materials for gas sensing applications, Adv. Mater. Interfaces, vol.3, p.1600335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02106437

S. A. Skoog, J. W. Elam, and R. J. Narayan, Atomic layer deposition: medical and biological applications, Int. Mater. Rev, vol.58, p.113, 2013.

A. H. Bronzena, C. J. Oldham, and G. N. Parsons, Atomic layer deposi-tion on polymer fibers and fabrics for multifunctional and electronic textiles, J. Vac. Sci. Technol. A, vol.34, p.10801, 2016.

H. H. Sønsteby, H. Fjellvåg, and O. Nilsen, Fuctional perovskites by atomic layer deposition -an overview, Adv. Mater. Interfaces, vol.4, p.1600903, 2017.

M. D. Mcdaniel, T. Q. Ngo, S. Hu, A. Posadas, A. A. Demkov et al., Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors, Appl. Phys. Rev, vol.2, p.41301, 2015.

O. Nilsen, S. Foss, H. Fjellvåg, and A. Kjekhus, Effect of substrate characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition, Thin Solid Films, vol.468, p.65, 2004.

K. Vasu, M. B. Sreedhara, J. Ghatak, and C. N. Rao, Atomic layer deposition of p-type epitaxial thin films of undoped and N-doped anatase TiO 2, ACS Appl. Mater. Interfaces, vol.8, p.7897, 2016.

E. Lindahl, J. Lu, M. Ottosson, and J. Carlsson, Epitaxial NiO (100) and NiO (111) films grown by atomic layer deposition, J. Cryst. Growth, vol.311, p.4082, 2009.

A. Marizy, P. Roussel, A. Ringuede, and M. Cassir, Atomic layer deposition of epitaxial CeO 2 thin layers for faster surface hydrogen oxidation and faster bulk ceria reduction/reoxidation, J. Mater. Chem. A, vol.3, p.10498, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02268875

H. Mändar, R. Rammula, A. Aidla, and J. Aarik, Atomic layer deposition of epitaxial HfO 2 thin films on r-cut sapphire, J. Mater. Res, vol.28, p.1680, 2013.

J. D. Emery, C. M. Schleputz, P. J. Guo, R. P. Chang, and A. B. Martinson, Epitaxial atomic layer deposition of Sn-doped indium oxide, Cryst. Growth Des, vol.16, p.640, 2016.

M. Coll, J. M. Montero-moreno, J. Gazquez, K. Nielsch, X. Obradors et al., Low Temperature Stabilization of Nanoscale Epitaxial Spinel Ferrite Thin Films by Atomic Layer Deposition, Adv. Funct. Mater, vol.24, p.1616, 2014.

X. Lou, H. Zhou, S. B. Kim, S. Alghamdi, X. Gong et al., epitaxial growth of Mg x Ca 1-x O on GaN by atomic layer deposition, Nano Lett, vol.16, p.7650, 2016.

O. Nilsen, E. Rauwel, H. Fjellvåg, and A. Kjekshus, Growth of La 1-x Ca x MnO 3 thin films by atomic layer deposition, J. Mater. Chem, vol.17, p.1466, 2007.

A. R. Akbashev, G. Chen, and J. E. Spanier, A Facile Route for Produc-ing Single-Crystalline Epitaxial Perovskite Oxide Thin Films, Nano Lett, vol.14, p.44, 2014.

T. Q. Ngo, A. B. Posadas, M. D. Mcdaniel, C. Hu, J. Bruley et al., Epitaxial c-axis oriented BaTiO 3 thin films on SrTiO 3 -buffered Si (001) by atomic layer deposi-tion, Appl. Phys. Lett, vol.104, issue.8, p.82910, 2014.

E. Østreng, H. H. Sønsteby, T. Sajavaara, and O. Nilsen, Atomic layer deposition of ferroelectric LiNbO 3, J. Mater. Chem. C, vol.1, p.4283, 2013.

M. D. Mcdaniel, A. Posadas, T. Q. Ngo, A. Dhamdhere, D. J. Smith et al., Epitaxial strontium titanate films grown by atomic layer deposition on SrTiO 3 -buffered Si(001) substrates, J. Vac. Sci. Technol. A, vol.31, pp.1-136, 2013.

H. H. Sønsteby, E. Østreng, and H. Fjellvåg, Deposition and X-ray characterization of epitaxial thin films of LaAlO 3, Thin Solid Films, vol.550, p.90, 2014.

M. Sowwan, Y. Yacoby, J. Pitney, R. Macharrie, M. Hong et al., Directatomic structure determination of epitaxially grown films: Gd 2 O 3 on GaAs(100), Phys. Rev. B, vol.66, p.205311, 2002.

Y. Yacoby, R. Pindak, R. Macharrie, L. Pfeiffer, L. Berman et al., Direct structure determination of systems with twodimensional periodicity, J. Phys.: Condens. Matter, vol.12, pp.3929-3938, 2000.

Z. Feng, Y. Yacoby, W. T. Hong, H. Zhou, M. D. Biegalski et al., Revealing the atomic structure and strontium distribution in nanometerthick La 0.8 Sr 0.2 CoO 3-? grown on (001)-oriented SrTiO 3, Energy Environ. Sci, vol.7, pp.1166-1174, 2014.

Z. Feng, Y. Yacoby, M. J. Gadre, Y. Lee, W. T. Hong et al., Anomalous interface and surface strontium segregation in (La 1-y Sr y ) 2 CoO 4 ± ? /La 1-x Sr x CoO 3-? heterostructured thin films, J. Phys. Chem. Lett, vol.5, pp.1027-1034, 2014.

T. H. Kim, D. Puggioni, Y. Yuan, L. Xie, H. Zhou et al., Polar metals by geometric design, Nature, vol.533, pp.68-72, 2016.

P. Wadley, A. Crespi, J. Gázquez, M. A. Roldán, P. García et al., Obtaining the structure factors of an epi-taxial film using Cu X-ray radiation, J. Appl. Cryst, vol.46, pp.1749-1754, 2013.

C. R. Serrao, J. Liu, J. T. Heron, G. Singh-bhalla, A. Yadav et al., Epitaxy-distorted spin-orbit Mott insulator in Sr2IrO4 thin films, Phys. Rev. B, vol.87, p.85121, 2013.

L. Horák, D. Kriegner, J. Liu, C. Frontera, X. Martí et al., Structure of epitaxial SrIrO 3 perovskite studied by interfer-ence between X-ray waves diffracted by the substrate and the thin film, J. Appl. Cryst, vol.50, pp.385-398, 2017.

U. Pietsch, V. Holý, and T. Baumbach, High resolution X-ray scattering, Springer Science + Bussines Media, LLC, 2004.

G. Catalan, B. Noheda, J. Mcaneney, L. J. Sinnamon, and J. M. Gregg, Strain gradients in epitaxial ferroelectrics, Phys. Rev. B, vol.72, p.20102, 2005.

Y. Li, C. Adamo, P. Chen, P. G. Evans, S. M. Nakhmanson et al., Giant optical enhancement of strain gradient in ferroelectric BiFeO 3 thin films and its physical origin, Scien-tific Reports, vol.5, p.16650, 2015.

U. Pietsch, H. Metzger, S. Rugel, B. Jenichen, and I. K. Robinson, Depth-resolved measurement of lattice relaxation in Ga1-xInxAs/GaAs strained layer supperlattices by means of grazing-incidence X-ray diffraction, J. Appl. Phys, vol.74, p.2381, 1993.

M. A. Pfeifer1, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, Threedimensional mapping of a deformation field inside a nanocrystal, Nature, vol.442, p.63, 2006.

V. Holý, K. Mundboth, C. Mokuta, T. H. Metzger, J. Stangl et al., Structural characterization of self-assembled semiconductor islands by three-dimensional X-ray diffraction mapping in reciprocal space, Thin Solid Films, vol.516, p.8022, 2008.

I. Robinson and R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale, Nat. Mat, vol.8, p.291, 2009.

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, Three-dimensional imaging of strain in a single ZnO nanorod, Nat. Mat, vol.9, p.120, 2010.

E. Fohtung, J. W. Kim, K. T. Chan, R. Harder, E. E. Fullerton et al., Probing the three-dimensional strain inhomogeneity and equilibrium elastic properties of single crystal Ni nano-wires, Appl. Phys. Letters, vol.101, p.33107, 2012.

Z. L. Luo, H. Huang, H. Zhou, Z. H. Chen, Y. Yang et al., Probing the domain structure of BiFeO 3 epi-taxial films with three-dimensional reciprocal space mapping, Appl. Phys. Letters, vol.104, p.182901, 2014.

R. Wang, H. Xu, B. Yang, Z. Luo, E. Sun et al., Phase coexistence and domain configuration in Pb

, Nb 2/3 )O 3 -0.34PbTiO 3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy, Appl. Phys. Letters, vol.108, p.152905, 2016.

J. Santiso, J. Roqueta, N. Bagués, C. Frontera, Z. Konstantinovic et al., Self-arranged misfit dislocation network formation upon strain release in La 0.7 Sr 0.3 MnO 3 /LaAlO 3 (100) epitaxial films under compressive strain, ACS Appl. Mater. Interfaces, vol.8, p.16823, 2016.

F. Liu, Photoresponse of ferroelectric BaTiO 3 thin films, 2017.

I. A. Varanyants and I. K. Robinson, Partial coherence effects on the imaging of small crystals using coherent X-ray diffraction, J. Phys.: Condens. Matter, vol.13, p.10593, 2001.

Y. Kozuka, Y. Hikita, C. Bell, and H. Y. Hwang, Dramatic mobility enhancements in doped SrTiO 3 thin films by defect management, Appl. Phys. Lett, vol.97, p.12107, 2010.

D. J. Keeble, B. Jalan, L. Ravelli, W. Egger, G. Kanda et al., Suppression of vacancy defects in epitaxial La-doped SrTiO 3 films, Appl. Phys. Lett, vol.99, p.232905, 2011.

J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright et al., Epitaxial SrTiO 3 films with electron mobilities exceeding 30,000 cm 2 V -1 s -1, Nat. Mater, vol.9, pp.482-484, 2010.

M. Bowen, J. L. Maurice, A. Barthelemy, P. Prod'homme, E. Jacquet et al., Bias-crafted magnetic tunnel junctions with bistable spindependent states, Appl. Phys. Lett, vol.89, p.103517, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00205009

P. Maier, F. Hartmann, J. Gabel, M. Frank, S. Kuhn et al., Gate-tunable, normally-on to normally-off memristance transition in patterned LaAlO 3 /SrTiO 3 interfaces, Appl. Phys. Lett, vol.110, p.93506, 2017.

Q. H. Qin, L. Akaslompolo, N. Tuomisto, L. D. Yao, S. Majumdar et al., Resistive Switching in All-Oxide Ferroelectric Tunnel Junctions with Ionic Interfaces, vol.28, pp.6852-6859, 2016.

F. Schleicher, U. Halisdemir, D. Lacour, M. Gallart, S. Boukari et al., Localized states in advanced dielectrics from the vantage of spin-and symmetry-polarized tunnelling across MgO, Nat. Commun, vol.5, p.4547, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01282617

R. Waser, R. Dittmann, M. Salinga, and M. Wuttig, Function by defects at the atomic scale -New concepts for non-volatile memories, Solid-State Electron, vol.54, pp.830-840, 2010.

R. Falster and V. V. Voronkov, On the properties of the intrinsic point defects in silicon: A perspective from crystal growth and wafer processing, Phys. Status Solidi B, vol.222, pp.219-244, 2000.

M. D. Mccluskey and S. J. Jokela, Defects in ZnO, J. Appl. Phys, vol.106, p.71101, 2009.

D. M. Smyth, The Defect Chemistry of Metal Oxides, 2000.

C. R. Catlow, Z. X. Guo, M. Miskufova, S. A. Shevlin, A. G. Smith et al., Advances in computational studies of energy materials, vol.368, pp.3379-3456, 2010.

O. F. Schirmer and K. A. Müller, Defects in neutron-irradiated stron-tium titanate -Ti 3+ off-center on a Sr 2+ site, Phys. Rev. B, vol.7, pp.2986-2995, 1973.

K. W. Blazey, R. Koch, and K. A. Muller, Non-stoichiometry of SrTiO 3 seen by electron paramagnetic resonance of reduced crystals, Mater. Res. Bull, vol.16, pp.1149-1152, 1981.

B. Liu, V. R. Cooper, H. X. Xu, H. Y. Xiao, Y. W. Zhang et al., Composition dependent intrinsic defect structures in SrTiO 3, Phys. Chem. Chem. Phys, vol.16, pp.15590-15596, 2014.

A. Janotti, J. B. Varley, M. Choi, and C. G. Van-de-walle, Vacancies and small polarons in SrTiO 3, Phys. Rev. B, vol.90, p.85202, 2014.

C. L. Jia, M. Lentzen, and K. Urban, Atomic-resolution imaging of oxygen in perovskite ceramics, Science, vol.299, pp.870-873, 2003.

H. Kim, J. Y. Zhang, S. Raghavan, and S. Stemmer, Direct Observation of Sr Vacancies in SrTiO 3 by Quantitative Scanning Transmission Electron Microscopy, Phys. Rev. X, vol.6, p.41063, 2016.

D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO 3, Nature, vol.430, pp.657-661, 2004.

Y. Tokuda, S. Kobayashi, T. Ohnishi, T. Mizoguchi, N. Shibata et al., Strontium vacancy clustering in Tiexcess SrTiO 3 thin film, Appl. Phys. Lett, vol.99, p.33110, 2011.

D. J. Keeble, Variable Energy Positron Annihilation Spectroscopy of Perovskite Oxides, pp.201-233, 2012.

D. J. Keeble, S. Singh, R. A. Mackie, M. Morozov, S. Mcguire et al., Cation vacancies in ferroelectric PbTiO 3 and Pb (Zr,Ti)O 3 : A positron annihilation lifetime spectroscopy study, Phys. Rev. B, vol.76, pp.144109-144105, 2007.

R. A. Mackie, S. Singh, J. Laverock, S. B. Dugdale, and D. J. Keeble, Vacancy defect positron lifetimes in strontium titanate, Phys. Rev. B, vol.79, p.14102, 2009.

D. J. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R. A. Mackie et al., Identification of A-and B-Site Cation Vacancy Defects in Perovskite Oxide Thin Films, Phys. Rev. Lett, vol.105, p.226102, 2010.

D. J. Keeble, S. Wicklein, L. Jin, C. L. Jia, W. Egger et al., Nonstoichiometry accommodation in SrTiO 3 thin films studied by positron annihilation and electron microscopy, Phys. Rev. B, vol.87, p.195409, 2013.

T. R. Kutty, P. Murugaraj, and N. S. Gajbhiye, Activation of trap centres in PTC BaTiO 3, Mater. Lett, vol.2, pp.396-400, 1984.

Y. S. Kim, J. Kim, S. J. Moon, W. S. Choi, Y. J. Chang et al., Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films, Appl. Phys. Lett, vol.94, p.202906, 2009.

T. C. Asmara, X. Wang, I. Santoso, Q. Zhang, T. Shirakawa et al., Large spectral weight transfer in optical conductivity of SrTiO 3 induced by intrinsic vacancies, J. Appl. Phys, vol.115, p.213706, 2014.

S. Lenjer, O. F. Schirmer, H. Hesse, and T. W. Kool, Conduction states in oxide perovskites: Three manifestations of Ti 3+ Jahn-Teller polarons in barium titanate, Phys. Rev. B, vol.66, p.165106, 2002.

S. Lenjer, O. F. Schirmer, H. Hesse, and T. W. Kool, Comment on 'Conduction states in oxide perovskites: Three man-ifestations of Ti 3+ Jahn-Teller polarons in barium titanate, Phys. Rev. B, vol.70, p.157102, 2004.

V. Singh, S. Watanabe, T. K. Rao, J. F. Chubaci, and H. Y. Kwak, Characterization, photoluminescence, thermally stimulated luminescence and electron spin resonance studies of Eu 3+ doped LaAlO 3 phosphor, Solid State Sciences, vol.13, pp.66-71, 2011.

D. Yamasaka, K. Tamagawa, and Y. Ohki, Effects of ultraviolet photon irradiation on the transition metal impurities in LaAlO 3, J. Appl. Phys, vol.110, p.74103, 2011.

O. A. Dicks, A. L. Shluger, P. V. Sushko, and P. B. Littlewood, Spectroscopic properties of oxygen vacancies in LaAlO 3, Phys. Rev. B, vol.93, p.134114, 2016.

D. Kan, O. Sakata, S. Kimura, M. Takano, and Y. Shimakawa, Structural characterization of Ar+-irradiated SrTiO 3 showing roomtemperature blue luminescence, Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol.46, pp.471-473, 2007.

D. S. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka et al., Blue-light emission at room temperature from Ar+-irradiated SrTiO 3, Nat. Mater, vol.4, pp.816-819, 2005.

S. Mochizuki, F. Fujishiro, K. Ishiwata, and K. Shibata, Defectinduced optical absorption and photoluminescence of Verneuil grown SrTiO 3 crystal, Physica B, vol.376, pp.816-819, 2006.

Y. Yamada, H. Yasuda, T. Tayagaki, and Y. Kanemitsu, Temperature Dependence of Photoluminescence Spectra of Nondoped and Electron-Doped SrTiO 3 : Crossover from Auger Recombination to Single-Carrier Trapping, Phys. Rev. Lett, vol.102, p.247401, 2009.

X. Wang, J. Q. Chen, A. R. Barman, S. Dhar, Q. H. Xu et al., Static and ultrafast dynamics of defects of SrTiO 3 in LaAlO 3 /SrTiO 3 heterostructures, Appl. Phys. Lett, vol.98, p.81916, 2011.

I. W. Seo, Y. S. Lee, S. A. Lee, and W. S. Choi, Optical investigation of oxygen defect states in SrTiO 3 epitaxial thin films, Curr. Appl. Phys, vol.17, pp.1148-1151, 2017.

D. J. Keeble, R. A. Mackie, W. Egger, B. Löwe, P. Pikart et al., Identification of vacancy defects in a thin film perovskite oxide, Phys. Rev. B, vol.81, p.64102, 2010.

M. S. Marshall, A. E. Becerra-toledo, L. D. Marks, and M. R. Castell, Surface and Defect Structure of Oxide Nanowires on SrTiO 3, Phys. Rev. Lett, vol.107, p.86102, 2011.

M. Sing, H. O. Jeschke, F. Lechermann, R. Valenti, and R. Claessen, Influence of oxygen vacancies on two-dimensional electron systems at SrTiO 3 -based interfaces and surfaces, Eur. Phys. J.-Spec. Top, vol.226, pp.2457-2475, 2017.

M. Studniarek, U. Halisdemir, F. Schleicher, B. Taudul, E. Urbain et al., Probing a Device's Active Atoms, Adv. Mater, vol.29, p.1606578, 2017.

J. Yao, L. Zhong, D. Natelson, and J. M. Tour, In situ imaging of the conducting filament in a silicon oxide resistive switch, Sci. Rep, vol.2, p.242, 2012.

S. A. Thomson, S. C. Hogg, I. D. Samuel, and D. J. Keeble, Air exposure induced recombination in PTB7:PC71BM solar cells, J. Mater. Chem. A, vol.5, pp.21926-21935, 2017.

H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa et al., Emergent phenomena at oxide interfaces, Nature Materials, vol.11, pp.103-113, 2012.

J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Colloquium: Emergent properties in plane view: Strong correlations at oxide interfaces, Rev. Modern Phys, vol.86, issue.4, p.1189, 2014.

W. Lu, W. Song, P. Yang, J. Ding, G. M. Chow et al., Strain Engineering of Octahedral Rotations and Physical Properties of SrRuO 3 Films, Scientific Reports, vol.5, p.10245, 2015.

S. J. May, C. R. Smith, J. Kim, E. Karapetrova, P. J. Bhattacharya et al., Control of octahedral rotations in (LaNiO 3 ) n / (SrMnO 3 ) m superlattices, Physical Review B, vol.83, issue.15, p.153411, 2011.

A. B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S. I. Sanchez et al., Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts, Nature Communications, vol.5, p.4155, 2014.

L. Jones, S. Wenner, M. Nord, P. H. Ninive, O. M. Løvvik et al., Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping, Ultramicroscopy, vol.179, pp.57-62, 2017.

C. T. Nelson, B. Winchester, Y. Zhang, S. J. Kim, A. Melville et al., Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces, vol.11, pp.828-834, 2011.

A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson et al., Observation of polar vortices in oxide superlattices, Nature, vol.530, pp.198-201, 2016.

S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo et al., Robust atomic resolution imaging of light elements using scanning transmission electron microscopy, Applied Physics Letters, vol.95, issue.19, pp.10-13, 2009.

H. Guo, Z. Wang, S. Dong, S. Ghosh, M. Saghayezhian et al., Interface-induced multiferroism by design in complex oxide superlattices, Proceedings of the National Academy of Sciences, vol.86, issue.4, 2017.

G. A. Botton, Probing bonding and electronic structure at atomic resolution with spectroscopic imaging, MRS Bulletin, vol.37, pp.21-28, 2012.

A. Gloter, V. Badjeck, L. Bocher, N. Brun, K. March et al., Atomically resolved mapping of EELS fine structures, Materials Science in Semiconductor Processing, vol.65, pp.2-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02503217

J. A. Mundy, Y. Hikita, T. Hidaka, T. Yajima, T. Higuchi et al., Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal-insulator transition, Nature Communications, vol.5, p.3464, 2014.

B. Zhang, L. Wu, W. Yin, C. Sun, P. Yang et al., Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film, Nano letters, vol.16, issue.17, pp.4174-4180, 2016.

J. Wu, O. Pelleg, G. Logvenov, A. Bollinger, Y. Sun et al., Anomalous independence of interface superconductivity from carrier density, Nat. Mater, vol.12, issue.10, pp.877-881, 2013.

M. Huijben, G. Koster, Z. Liao, and G. Rijnders, Interface-engineered oxygen octahedral coupling in manganite heterostructures, Appl. Phys. Rev, vol.4, p.41103, 2017.

R. F. Klie, J. C. Zheng, Y. Zhu, M. Varela, J. Wu et al., Direct measurement of the low-temperature spin-state transition in LaCoO 3, Physical Review Letters, vol.99, issue.4, pp.1-4, 2007.

I. E. Baggari, B. H. Savitzky, A. S. Admasu, J. Kim, S. Cheong et al., Nature and evolution of incommen-surate charge order in manganites visualized with cryogenic scanning transmission electron microscopy, Proceedings of the National Academy of Sciences, vol.115, issue.7, pp.1445-1450, 2018.

W. Zhao, M. Li, C. Chang, J. Jiang, L. Wu et al., Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO 3 interface, Science advances, vol.4, issue.3, p.2682, 2018.

J. L. Hart, A. C. Lang, A. C. Leff, P. Longo, C. Trevor et al., Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity, Scientific Reports, vol.7, issue.1, p.8243, 2017.

D. J. Baek, B. H. Goodge, D. Lu, Y. Hikita, H. Y. Hwang et al., Enhanced Sensitivity of Atomic-Resolution Spectroscopic Imaging by Direct Electron Detection, Microscopy and Microanalysis, vol.23, issue.S1, pp.366-367, 2017.

N. Shibata, S. D. Findlay, Y. Kohno, H. Sawada, Y. Kondo et al., Iku-hara, Differential phase-contrast microscopy at atomic resolution, Nature Physics, vol.8, issue.8, pp.611-615, 2012.

K. Müller, F. F. Krause, A. Béché, M. Schowalter, V. Galioit et al., Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction, Nature Communications, vol.5, p.5653, 2014.

H. Yang, R. N. Rutte, L. Jones, M. Simson, R. Sagawa et al., Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures, Nature Communications, vol.7, p.12532, 2016.

T. Matsumoto, Y. So, Y. Kohno, H. Sawada, Y. Ikuhara et al., Direct observation of domain boundary core structure in magnetic skyrmion lattice, Science Advances, vol.2, issue.2, p.1501280, 2016.

T. J. Pennycook, A. R. Lupini, H. Yang, M. F. Murfitt, L. Jones et al., Efficient phase contrast imaging in STEM using a pixelated detector, Ultramicroscopy, vol.151, pp.160-167, 2015.

H. Ryll, M. Simson, R. Hartmann, P. Holl, M. Huth et al., A pnCCD-based, fast direct single electron imaging camera for TEM and STEM, Journal of Instrumentation, vol.11, issue.04, p.4006, 2016.

M. W. Tate, P. Purohit, D. Chamberlain, K. X. Nguyen, R. Hovden et al., High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy, Microscopy and Microanalysis, vol.22, issue.01, pp.237-249, 2016.

L. O. Chua and S. M. Kang, Proc. IEEE, vol.64, pp.209-223, 1976.

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater, vol.21, pp.2632-2663, 2009.

R. Waser, Nanotechnology, Information Technology II, vol.4, 2008.

D. Ielmini and R. Waser, Resistive Switching -From Fundamentals of Nanoionic Redox Processes to Memristive Device Applica-tions, 2016.

B. Govoreanu, G. S. Kar, Y. Chen, V. Paraschiv, S. Kubicek et al.,

K. Li, C. Ho, M. Lee, M. Chen, C. Hsu et al., Symposium On VLSI Technology: Digest of Technical Papers, vol.2, p.pp, 2014.

A. C. Torrezan, J. P. Strachan, G. Medeiros-ribeiro, and R. S. Williams, Nanotechnology, vol.22, p.485203, 2011.

S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann et al., Adv. Funct. Mater, vol.21, pp.4487-4492, 2011.

F. Miao, J. P. Strachan, J. J. Yang, M. Zhang, I. Goldfarb et al., Advanced Materials, vol.23, p.5633, 2011.

Y. Y. Chen, R. Degraeve, S. Clima, B. Govoreanu, L. Goux et al., Ieee International Electron Devices Meeting (iedm, 2012.

M. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang et al., Nat. Mater, vol.10, pp.625-630, 2011.

Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve et al., IEEE Trans. Electron Devices, vol.60, pp.1114-1121, 2013.

H. P. Wong, C. Ahn, J. Cao, H. Chen, S. W. Fong et al., , 2017.

Y. Hayakawa, A. Himeno, R. Yasuhara, W. Boullart, E. Vecchio et al., Tech. Dig, pp.14-15, 2015.

J. F. Scott, Applications of modern ferroelectrics, Science, vol.315, pp.954-959, 2007.

D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt et al., Emerging memories: resistive switching mechanisms and current status, Rep. Prog. Phys, vol.75, 2012.

A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott et al., A resistive memory in semiconducting BiFeO 3 thin-film capacitors, Adv. Mater, vol.23, pp.1277-1281, 2011.

E. Y. Tsymbal and H. Kohlstedt, Tunneling Across a Ferroelectric, Science, vol.313, pp.181-183, 2006.

M. Zhuravlev, R. Sabirianov, S. Jaswal, and E. , Giant Electroresistance in Ferroelectric Tunnel Junctions, Phys. Rev. Lett, vol.94, p.246802, 2005.

H. Kohlstedt, N. Pertsev, J. Contreras, and R. Waser, Theoretical current-voltage characteristics of ferroelectric tunnel junctions, Phys. Rev. B, vol.72, p.125341, 2005.

H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova et al., Giant Electroresistance of Super-Tetragonal BiFeO 3 -Based Ferroelectric Tunnel Junctions, ACS Nano, vol.7, pp.5385-5390, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02509417

Z. Wen, C. Li, D. Wu, A. Li, and N. Ming, Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconduc tor tunnel junctions, Nat. Mater, vol.12, pp.617-621, 2013.

L. Esaki, R. B. Laibowitz, and P. J. Stiles, Polar Switch, IBM Tech. Discl. Bull, vol.13, p.2161, 1971.

H. Kohlstedt, N. A. Pertsev, and R. Waser, Size Effects on Polariza-tion in Epitaxial Ferroelectric Films and the Concept of Ferroelectric Tunnel Junctions Including First Results, MRS Proc, vol.688, 2001.

D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello et al., Ferroelectricity in ultrathin perovskite films, vol.304, pp.1650-1653, 2004.

D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-kimura, A. Fain-stein, R. S. Katiyar et al., Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy, vol.313, pp.1614-1616, 2006.

J. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal et al., Resistive switching in metal-ferroelectric-metal junctions, Appl. Phys. Lett, vol.83, 2003.

H. Kohlstedt, A. Petraru, K. Szot, A. Ru¨diger, P. Meuffels et al., Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors, Appl. Phys. Lett, vol.92, p.62907, 2008.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-vedrenne, N. D. Mathur et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, vol.460, pp.81-84, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02347661

P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A. P. Baddorf et al., Polarization control of electron tunneling into ferroelectric surfaces, Science, vol.324, pp.1421-1425, 2009.

A. Gruverman, D. Wu, H. Lu, Y. Wang, H. W. Jang et al., Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale, Nano Lett, vol.9, pp.3539-3543, 2009.

D. Pantel, S. Goetze, D. Hesse, and M. , Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8 )O 3 films, ACS Nano, vol.5, pp.6032-6038, 2011.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil et al., Solid-state memories based on ferroelectric tunnel junctions, Nat. Nanotechnol, vol.7, pp.101-104, 2012.

V. Garcia and M. Bibes, Ferroelectric tunnel junctions for informa-tion storage and processing, Nat. Commun, vol.5, 2014.

J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing, Nat. Nanotechnol, vol.8, pp.13-24, 2013.

M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys, vol.77, pp.1083-1130, 2005.

G. Catalan, J. F. Scott, A. Schilling, and J. M. Gregg, Wall thickness dependence of the scaling law for ferroic stripe domains, J. Phys. Condens. Matter, vol.19, p.22201, 2007.

A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil et al., A ferroelectric memristor, Nat. Mater, vol.11, pp.860-864, 2012.

S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli et al., Applied Surface Science, vol.482, pp.1-93, 2019.

V. Garcia, Learning through ferroelectric domain dynamics in solid-state synapses, Nat. Commun, vol.8, p.14736, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02288726

S. Boyn, A. M. Douglas, C. Blouzon, P. Turner, A. Barthélémy et al., Tunnel electroresistance in BiFeO 3 junctions: size does matter, Appl. Phys. Lett, vol.109, p.232902, 2016.

H. Yamada, A. Tsurumaki-fukuchi, M. Kobayashi, T. Nagai, Y. Toyosaki et al., Strong Surface-Termination Effect on Electroresistance in Ferroelectric Tun-nel Junctions, vol.25, pp.2708-2714, 2015.

G. Radaelli, D. Gutiérrez, F. Sánchez, R. Bertacco, M. Stengel et al., Large Room-Temperature Electroresistance in Dual-Modulated Ferroelectric Tunnel Barriers, Adv. Mater, vol.27, pp.2602-2607, 2015.

L. Wang, M. R. Cho, Y. J. Shin, J. R. Kim, S. Das et al., Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO 3 / SrTiO 3 composite barriers, Nano Lett, vol.16, pp.3911-3918, 2016.

J. M. López-encarnación, J. D. Burton, E. Y. Tsymbal, and J. P. Velev, Organic multiferroic tunnel junctions with ferroelectric poly (vinylidene fluoride) barriers, Nano Lett, vol.11, pp.599-603, 2011.

B. B. Tian, J. L. Wang, S. Fusil, Y. Liu, X. L. Zhao et al., Tunnel electroresistance through organic ferroelectrics, vol.7, p.11502, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385275

Z. Li, X. Guo, H. Lu, Z. Zhang, D. Song et al., An Epitaxial Ferroelectric Tunnel Junction on Silicon, vol.26, pp.7185-7189, 2014.

S. Boyn, S. Girod, V. Garcia, S. Fusil, S. Xavier et al., High-performance ferroelectric memory based on fully patterned tunnel junctions, Appl. Phys. Lett, vol.104, p.52909, 2014.

D. Lee, M. G. Kim, S. Ryu, H. M. Jang, and S. G. Lee, Epitaxially grown La-modified BiFeO 3 magnetoferroelectric thin films, Appl. Phys. Lett, vol.86, p.222903, 2005.

J. Merz and J. R. Anderson, Ferroelectric Storage Devices, Bell Lab Records, vol.33, pp.335-342, 1955.

J. R. Anderson, Ferroelectric Materials as Storage Elements for Digital Computers and Switching Systems, Part I: Communication and Electronics, vol.71, pp.395-401, 1953.

D. Bondurant, Ferroelectronic RAM Memory Family for Critical Data Storage, Ferroelectrics, vol.112, pp.273-282, 1990.

, Thin film ferroelectric materials and devices, 2013.

A. I. Kingon, S. K. Streiffer, C. Basceri, and S. R. Summerfelt, MRS Bulletin, vol.21, p.46, 1996.

J. A. Rodrigues, K. Remack, K. Boku, K. R. Udayakumar, S. Aggar-wal et al., IEEE Trans. Device Mater. Reliab, vol.4, p.436, 2004.

H. P. Mcadams, R. Acklin, T. Blake, X. Du, J. Eliason et al., IEEE J. Solid-State Circuit, vol.39, p.667, 2004.

K. Maruyama, M. Kondo, S. K. Singh, and H. Ishiwara, Fujitsu Sci. Tech. J, vol.43, pp.502-507, 2007.

J. T. Evans, L. Leonard, G. Boyer, R. Velasquez, S. Ramesh et al., Vassillis Keramidas, Jpn. J. Appl. Phys, vol.38, p.5361, 1999.

S. J. Kim, D. Narayan, J. Lee, J. Mohan, J. S. Lee et al., Proc. 9th IEEE International Memory Workshop, 2017.

J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J. Maria et al., J. Am. Ceram. Soc, vol.99, pp.2537-2557, 2016.

J. Koo, B. Seo, S. Kim, S. Shin, J. Lee et al., IEDM Techn. Digest, pp.340-343, 2005.

C. Yeh, M. Lisker, B. Kalkofen, and E. P. Burte, AIP Advances, vol.6, p.35128, 2016.

D. J. Wouters, D. Maes, L. Goux, J. G. Lisoni, V. Paraschiv et al., Journal of Applied Physics, vol.100, p.51603, 2006.

T. Mikolajick, Encyclopedia of Materials Science and Technology, pp.1-5, 2002.

T. P. Ma and J. Han, IEEE Electron Device Lett, vol.23, pp.386-388, 2002.

S. Sakai and R. Ilangovan, IEEE Electron Device Lett, vol.25, pp.369-371, 2004.

T. S. Böscke, J. Müller, D. Bräuhaus, U. Schroeder, and U. Böttger, Appl. Phys. Lett, vol.99, p.102903, 2011.

J. Müller, T. S. Böscke, S. Müller, E. Yurchuk, P. Polakowski et al., Proc. 59th IEEE International Electron Devices Meeting (IEDM), 10.8.1, 2013.

U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk et al., Jpn. J. Appl. Phys, vol.53, pp.8-10, 2014.

U. Schroeder, C. Richter, M. H. Park, T. Schenk, D. Pohl et al., Inorg. Chem, vol.57, issue.5, pp.2752-2765, 2018.

J. Müller, T. S. Böscke, D. Bräuhaus, U. Schroeder, U. Böttger et al., Apl. Phys. Lett, vol.99, p.112901, 2011.

J. Mu¨ller, T. S. Bo¨scke, U. Schro¨der, S. Mueller, D. Bra¨uhaus et al., Nano Lett, vol.12, pp.4318-114323, 2012.

M. Trentzsch, IEEE International Electron Devices Meeting (IEDM), 2016.

J. Rodriguez, K. Remack, J. Gertas, L. Wang, C. Zhou et al., Proc. IEEE IRPS, pp.750-758, 2010.

E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin et al., IEEE Trans. Electr. Dev, vol.61, p.11, 2014.

F. Chu, E. Kim, D. Kim, and S. Emley, Enhanced Endurance Performance of 0.13 lm Nonvolatile FRAM Products

M. Pe?ic´, M. Hoffmann, C. Richter, T. Mikolajick, and U. Schroeder, Adv. Funct. Mater, vol.26, pp.7486-7494, 2016.

M. Pesic, S. Knebel, M. Hoffmann, C. Richter, T. Mikolajick et al., 2016 IEEE International Electron Devices Meeting (IEDM), 2016.

M. Pe?ic´, U. Schroeder, S. Slesazeck, and T. Mikolajick, IEEE Transactions on Device and Materials Reliability, vol.18, issue.2, pp.154-162, 2018.

M. Pe?ic, F. Fengler, L. Larcher, A. Padovani, T. Schenk et al., Adv. Funct. Mater, vol.26, pp.4601-4612, 2016.

T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger et al., International Electron Devices Meeting, vol.95, pp.136-145, 2011.

J. Müller, T. S. Böscke, U. Schröder, R. Hoffmann, T. Mikolajick et al., IEEE Electron Device Lett, vol.33, pp.185-187, 2012.

J. Müller, VLSI Technology (VLSI), 2012.

D. E. Nikonov and I. A. Young, Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking, Nan-otechnology, vol.23, p.305205, 2012.

J. J. Yang and R. S. Williams, Memristive Devices in Computing Sys-tem: Promises and Challenges, vol.9, p.11, 2013.

A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications, Solid-State Electronics, vol.125, pp.25-38, 2016.

T. You, Y. Shuai, W. Luo, N. Du, D. Bürger et al., Exploiting Memristive BiFeO 3 Bilayer Structures for Compact Sequential Logics, Advanced Functional Materials, vol.24, pp.3357-3365, 2014.

R. Waser, Nanoelectronics and Information Technology, 2012.

J. S. Friedman, A. Girdhar, R. M. Gelfand, G. Memik, H. Mohseni et al., Cas-caded spintronic logic with lowdimensional carbon, Nat. Commun, vol.8, p.15635, 2017.

V. V. Zhirnov, R. K. Cavin, S. Menzel, E. Linn, S. Schmelzer et al., Memory Devices: Energy-Space-Time Tradeoffs, Proc. IEEE 98, pp.2185-2200, 2010.

S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald et al., IEEE Trans. Circuits Syst, II-Express Briefs, vol.61, pp.895-899, 2014.

E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, Beyond von Neumannlogic operations in passive crossbar arrays alongside memory operations, Nanotechnology, vol.23, p.305205, 2012.

L. Xie, H. A. Du-nguyen, J. Yu, A. Kaichouhi, M. Taouil et al., Scouting Logic: A Novel Memristor-Based Logic Design for Resistive Computing, IEEE Computer Society Annual Symposium on VLSI, pp.3-5, 2017.

S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. Weiser et al., Fried-man, MRL -Memristor Ratioed Logic, 13th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), pp.1-6, 2012.

J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart et al., Memristive' switches enable 'stateful' logic operations via material implication, Nature, vol.464, pp.873-876, 2010.

G. Snider, Computing with hysteretic resistor crossbars, Appl. Phys. A -Mater. Sci. Process, vol.80, pp.1165-1172, 2005.

Y. V. Pershin and M. D. Ventra, Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements, vol.100, pp.2071-2080, 2012.

I. Vourkas and G. Ch, Sirakoulis, A Novel Design and Modeling Paradigm for Memristor-Based Crossbar Circuits, IEEE Trans. Nanotechnol, vol.11, pp.1151-1159, 2012.

L. Gao, F. Alibart, and D. Strukov, Programmable CMOS/Memristor Threshold Logic, IEEE Trans. Nanotechnol, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00827373

A. P. James, L. R. Francis, and D. S. Kumar, Resistive Threshold Logic, vol.22, pp.190-195, 2014.

T. Breuer, A. Siemon, E. Linn, S. Menzel, R. Waser et al., A HfO 2 -Based Complementary Switching Crossbar Adder, Advanced Electronic Materials, vol.1, p.1500138, 2015.

S. Menzel, M. Salinga, U. Böttger, and M. Wimmer, Physics of the switching kinetics in resistive memories, Adv. Funct. Mater, vol.25, pp.6306-6325, 2015.

S. Menzel, A. Siemon, and E. Linn, Impact of the Nonlinear Switch-ing Kinetics on Logic Circuits based on Memristive Switching Devices, 2016.

M. L. Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers et al., Mixed-precision in-memory computing, Nature Electronics, vol.1, pp.246-253, 2018.

M. Prezioso, F. Merrikh-bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature, vol.521, pp.61-64, 2015.

M. Hu, J. P. Strachan, Z. Li, E. Grafals, N. Davila et al., Dot-Product Engine for Neuromorphic Computing: Programming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication, 53rd Design Automation Conference, 2016.

K. F. Schuegraf and C. Hu, Hole Injection SiO 2 Breakdown Model for Very Low Voltage Lifetime Extrapolation, IEEE Trans. Electron Devices, vol.41, p.761, 1994.

W. Lee and C. Hu, Modeling CMOS Tunneling Currents Through Ultrathin Gate Oxide Due to Conduction-and Valence-Band Electron and Hole Tunneling, IEEE Trans. Electron Devices, vol.48, p.1366, 2001.

Y. Yeo, T. King, and C. Hu, MOSFET Gate Leakage Modeling and Selection Guide for Alternative Gate Dielectrics Based on Leak-age Considerations, IEEE Trans. Electron Devices, vol.50, p.1027, 2003.

C. Sah, Characteristics of the metal-oxide-semiconductor transistors, IEEE Trans. Electron Devices, vol.11, p.324, 1964.

C. Sah, Fundamentals of Solid State Electronics, 1991.

R. H. Yan, A. Ourmazd, and K. F. Lee, Scaling the Si MOSFET: from bulk to SOI to bulk, IEEE Transactions on Electron Devices, p.1704, 1992.

J. P. Colinge, . Multi-gate, and . Soi-mosfets, Microel. Eng, vol.84, p.2071, 2007.

, ITRS 2013, ?www.itrs.net?

M. Perego, G. Seguini, G. Scarel, M. Fanciulli, and F. Wallrapp, Energy band alignment at TiO 2 /Si interface with various inter-layers, Journal of Applied Physics, vol.103, p.43509, 2008.

C. Yang and J. Hwua, Role of fringing field on the electrical characteristics of metal-oxide-semiconductor capacitors with co-planar and edge-removed oxides, AIP Advances, vol.6, p.125017, 2016.

M. Fanciulli, O. Costa, S. Baldovino, S. Cocco, G. Seguini et al., Defects at the High-k/Semiconductor Inter-faces Investigated by Spin Dependent Spectroscopies, Defects in High-k Dielectric Stacks, E. Gusev Ed, vol.220, p.263, 2006.

M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-j insulator: The role of remote phonon scattering, Journal of Applied Physics, vol.90, p.4587, 2001.

S. Barraud, L. Thevenod, M. Cassé, O. Bonno, and M. Mouis, Model-ing of remote Coulomb scattering limited mobility in MOSFET with HfO 2 /SiO 2 gate stacks, Microel. Eng, vol.84, p.2404, 2007.

P. Toniutti, P. Palestri, D. Esseni, F. Driussi, M. De-michielis et al., On the origin of the mobility reduction in n-and p-m etal-oxide-semiconductor field effect transistors with hafnium-based/metal gate stacks, Journal of Applied Physics, vol.112, p.34502, 2012.

S. Kar, High Permittivity Gate Dielectric Materials, Springer Series in Advanced Microelectronics, vol.43, 2013.

, Rare Earth Oxides Thin Films: growth, characterization, and applications, Topics in Applied Physics, vol.106, 2007.

K. Shiraishi, Y. Akasaka, N. Umezawa, Y. Nara, H. Takeuchi et al., Theory of Fermi Level Pin-ning of High-k Dielectrics, p.306, 2006.

S. Paleari, S. Baldovino, A. Molle, and M. Fanciulli, Evidence of Trig-onal Dangling Bonds at the Ge(111)/Oxide Interface by Electri-cally Detected Magnetic Resonance, Phys. Rev. Lett, vol.110, p.206101, 2013.

G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayio-tatos et al., Electri-cal properties of La 2 O 3 and HfO 2 / La 2 O 3 gate dielectrics for germanium metal-oxide-semiconductor devices, J. Appl. Phys, vol.103, p.14506, 2008.

S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov et al., Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon inter-face passivation layer, Appl. Phys. Lett, vol.88, p.22106, 2006.

M. Passlack, M. Hong, and J. P. Mannaerts, Quasistatic and high fre-quency capacitance-voltage characterization of Ga 2 O 3 -GaAs structures fabricated by in situ molecular beam epitaxy, Appl. Phys. Lett, vol.68, p.1099, 1996.

H. C. Lin, P. D. Yea, and G. D. Wilk, Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al 2 O 3 on GaAs, Appl. Phys. Lett, vol.87, p.182904, 2005.

A. Molle, L. Lamagna, C. Grazianetti, G. Brammertz, C. Merckling et al., Reconstruction depen-dent reactivity of As-decapped In 0.53 Ga 0.47 As(001) surfaces and its influence on the electrical quality of the interface with Al 2 O 3 grown by atomic layer deposition, Appl. Phys. Lett, vol.99, p.193505, 2011.

A. Molle, G. Brammertz, L. Lamagna, M. Fanciulli, M. Meuris et al., Ge-based interface passivation for atomic layer depos-ited La-doped ZrO2 on III-V compound (GaAs, In0.15Ga0.85As) substrates, Appl. Phys. Lett, vol.95, p.23507, 2009.

M. Diarra, Y. Niquet, C. Delerue, and G. Allan, Ionization energy of donor and acceptor impurities in semiconductor nano-wires: Importance of dielectric confinement, Phys. Rev. B, vol.75, p.45301, 2007.

C. H. Cheng and A. Chin, Low-voltage steep turn-on pMOSFET using ferroelectric highk gate dielectric, IEEE Electron Device Lett, vol.35, p.274, 2014.

D. E. Nikonova and I. A. Young, Benchmarking spintronic logic devices based on magnetoelectric oxides, J. of Mat. Res, vol.29, p.2109, 2014.

A. Jaiswal, K. Roy, and . Mesl, Proposal for a Non-volatile Cascad-able Magneto-Electric Spin Logic, Scientific Reports, vol.7, p.39793, 2017.

S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nature Mater, vol.3, p.862, 2004.

S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/ MgO/Fe magnetic tunnel junctions, Nature Mater, vol.3, p.868, 2004.

R. Mantovan, M. Georgieva, M. Perego, H. L. Lu, S. Cocco et al., Atomic Layer Deposition of Magnetic Thin Films, Acta Phys. Polonica A, vol.112, p.1271, 2007.

L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature, Nature Nanotechnology, vol.10, p.227, 2015.

M. J. Mleczko, C. Zhang, H. R. Lee, H. Kuo, B. Magyari-köpe et al., HfSe 2 and ZrSe 2 : Two-dimensional semiconductors with native high-k oxides, Sci. Adv, vol.3, p.1700481, 2017.

P. Fromherz, Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips, Solid-State Electronics, vol.52, p.1364, 2008.

X. Jehl, Y. Niquet, and M. Sanquer, Single donor electronics and quantum functionalities with advanced CMOS technology, J. Phys.: Condens. Matter, vol.28, p.103001, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01849846

L. Gordon, H. Abu-farsakh, A. Janotti, and C. G. Van-de-walle, Hydrogen bonds in Al 2 O 3 as dissipative two-level systems in superconducting qubits, Scientific Reports, vol.4, p.7590, 2014.

R. , 19.7 A 16 Gb ReRAM with 200 MB/s write and 1 GB/s read in 27 nm technology, 2014 IEEE Interna-tional Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.338-339, 2014.

E. Y. Tsymbal and E. R. Dagotto, Mul-tifunctional Oxide Heterostructures, 2012.

&. and W. , Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications -Daniele Ielmini, Rainer Waser

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature, vol.453, pp.80-83, 2008.

T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses, Nat. Mater, vol.10, issue.8, pp.591-595, 2011.

K. K. Likharev, CrossNets: Neuromorphic Hybrid CMOS/Nano-electronic Networks, Sci. Adv. Mater, vol.3, issue.3, pp.322-331, 2011.

Ö. Türel, J. H. Lee, X. Ma, and K. K. Likharev, Neuromorphic archi-tectures for nanoelectronic circuits, Int. J. Circuit Theory Appl, vol.32, issue.5, pp.277-302, 2004.

D. B. Strukov and R. S. Williams, Four-dimensional address topol-ogy for circuits with stacked multilayer crossbar arrays, Proc. Natl. Acad. Sci, vol.106, pp.20155-20158, 2009.

M. Hu, Dot-product engine for neuromorphic comput-ing: Programming 1T1M crossbar to accelerate matrix-vector multiplication, 2016 53nd ACM/ EDAC/IEEE Design Automation Conference (DAC) 2016, pp.1-6

J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing, Nat. Nanotechnol, vol.8, issue.1, pp.13-24, 2013.

D. Kuzum, S. Yu, and H. P. Wong, Synaptic electronics: materi-als, devices and applications, Nanotechnology, vol.24, issue.38, p.382001, 2013.

G. W. Burr, Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element, 2014 IEEE International Electron Devices Meeting, 2014.

Y. Wang, Y. Lin, I. Wang, T. Lin, and T. Hou, Charac-terization and Modeling of Nonfilamentary Ta/TaOx/TiO 2 /Ti Analog Synaptic Device, Sci. Rep, vol.5, p.10150, 2015.

M. Hansen, F. Zahari, M. Ziegler, and H. Kohlstedt, Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition, Front. Neurosci, p.11, 2017.

D. J. Wouters, R. Waser, and M. Wuttig, Phase-Change and Redox-Based Resistive Switching Memories, Proc. IEEE 103, pp.1274-1288, 2015.

E. Janod, Resistive Switching in Mott Insulators and Cor-related Systems, Adv. Funct. Mater, vol.25, issue.40, pp.6287-6305, 2015.

S. D. Ha, J. Shi, Y. Meroz, L. Mahadevan, and S. Ramanathan, Neu-romimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems, Phys. Rev. Appl, vol.2, issue.6, p.64003, 2014.

F. Alibart, E. Zamanidoost, and D. B. Strukov, Pattern classification by memristive crossbar circuits using ex situ and in situ train-ing, Nat. Commun, vol.4, p.2072, 2013.

S. Park, Electronic system with memristive synapses for pattern recognition, Sci. Rep, vol.5, p.10123, 2015.

P. Yao, Face classification using electronic synapses, Nat. Commun, vol.8, p.15199, 2017.

S. B. Eryilmaz, Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array, Front. Neurosci, vol.8, p.205, 2014.

M. Chu, Neuromorphic Hardware System for Visual Pat-tern Recognition With Memristor Array and CMOS Neuron, IEEE Trans. Ind. Electron, vol.62, issue.4, pp.2410-2419, 2015.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, Immunity to Device Variations in a Spiking Neural Network With Memris-tive Nanodevices, IEEE Trans. Nanotechnol, vol.12, issue.3, pp.288-295, 2013.

S. , Resistive memory device requirements for a neural algorithm accelerator, 2016 International Joint Conference on Neural Networks (IJCNN), pp.929-938, 2016.

G. W. Burr, Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power), IEEE International Electron Devices Meeting (IEDM), 2015.

W. A. Borders, Analogue spin-orbit torque device for artificial-neuralnetwork-based associative memory oper-ation, Appl. Phys. Express, vol.10, issue.1, p.13007, 2016.

G. S. Snider, Spike-timing-dependent learning in memristive nanodevices, IEEE International Symposium on Nanoscale Architectures, pp.85-92, 2008.

T. Serrano-gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-barranco, STDP and STDP variations with memristors for spiking neuromorphic learning systems, Front. Neurosci, vol.7, issue.2, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01578521

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Lett, vol.10, issue.4, pp.1297-1301, 2010.

K. Seo, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device, Nanotechnology, vol.22, issue.25, p.254023, 2011.

M. Suri, Bio-Inspired Stochastic Computing Using Bin-ary CBRAM Synapses, IEEE Trans. Electron Devices, vol.60, issue.7, pp.2402-2409, 2013.

S. Mandal, A. El-amin, K. Alexander, B. Rajendran, and R. Jha, Novel synaptic memory device for neuromorphic comput-ing, Sci. Rep, vol.4, p.5333, 2014.

S. Saïghi, Plasticity in memristive devices for spiking neural networks, Neuromorphic Eng, vol.9, p.51, 2015.

S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi et al., Experi-mental Demonstration of a Second-Order Memristor and Its Ability to Biorealistically Implement Synaptic Plasticity, Nano Lett, vol.15, issue.3, pp.2203-2211, 2015.

S. L. Barbera, A. F. Vincent, D. Vuillaume, D. Querlioz, and F. Alibart, Interplay of multiple synaptic plasticity features in filamen-tary memristive devices for neuromorphic computing, Sci. Rep, vol.6, p.39216, 2016.

A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein et al., Unsupervised learning in probabilistic neural net-works with multi-state metal-oxide memristive synapses, Nat. Commun, vol.7, p.12611, 2016.

G. Pedretti, Memristive neural network for on-line learning and tracking with brain-inspired spike timing depen-dent plasticity, Sci. Rep, vol.7, issue.1, p.5288, 2017.

O. Bichler, D. Querlioz, S. J. Thorpe, J. Bourgoin, and C. Gamrat, Extraction of temporally correlated features from dynamic vision sensors with spike-timingdependent plasticity, Neu-ral Netw, vol.32, pp.339-348, 2012.

S. Choi, J. H. Shin, J. Lee, P. Sheridan, and W. D. Lu, Experimental Demonstration of Feature Extraction and Dimensionality Reduction Using Memristor Networks, Nano Lett, vol.17, issue.5, pp.3113-3118, 2017.

P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang et al., Sparse coding with memristor networks, Nat. Nanotechnol, vol.12, issue.8, pp.784-789, 2017.

K. Gacem, Neuromorphic function learning with carbon nanotube based synapses, Nanotechnology, vol.24, issue.38, p.384013, 2013.

K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present sta-tus and outlook, Nanotechnology, vol.22, issue.25, p.254002, 2011.

D. B. Strukov and K. K. Likharev, A Reconfigurable Architecture for Hybrid CMOS/ Nanodevice Circuits, Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Pro-grammable Gate Arrays, pp.131-140, 2006.

C. Kügeler, R. Rosezin, E. Linn, R. Bruchhaus, and R. Waser, Mate-rials, technologies, and circuit concepts for nanocrossbar-based bipolar RRAM, Appl. Phys. A, vol.102, issue.4, pp.791-809, 2011.

A. Siemon, S. Menzel, R. Waser, and E. Linn, A Complementary Resistive Switch-Based Crossbar Array Adder, IEEE J. Emerg. Sel. Top. Circuits Syst, vol.5, issue.1, pp.64-74, 2015.

C. Li, Three-dimensional crossbar arrays of self-rectifying Si/SiO 2 /Si memristors, Nat. Commun, vol.8, p.15666, 2017.

B. Rajendran and F. Alibart, Neuromorphic Computing Based on Emerging Memory Technologies, IEEE J. Emerg. Sel. Top. Cir-cuits Syst, vol.6, issue.2, pp.198-211, 2016.

M. D. Pickett, G. Medeiros-ribeiro, and R. S. Williams, A scalable neuristor built with Mott memristors, Nat. Mater, vol.12, issue.2, pp.114-117, 2013.

M. D. Pickett and R. S. Williams, Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide cross-point nanodevices, Nanotechnology, vol.23, issue.21, p.215202, 2012.

N. Shukla, Synchronized charge oscillations in corre-lated electron systems, Sci. Rep, vol.4, p.4964, 2014.

A. A. Sharma, J. A. Bain, and J. A. Weldon, Phase Coupling and Con-trol of Oxide-Based Oscillators for Neuromorphic Computing, IEEE J. Explor. Solid-State Comput. Devices Circuits, vol.1, pp.58-66, 2015.

S. Kumar, J. P. Strachan, and R. Williams, Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing, Nature, vol.548, issue.7667, pp.318-321, 2017.

N. Shukla, W. Y. Tsai, M. Jerry, M. Barth, V. Narayanan et al., Ultra low power coupled oscillator arrays for computer vision applications, 2016 IEEE Symposium on VLSI Tech-nology, pp.1-2, 2016.

S. Li, X. Liu, S. K. Nandi, D. K. Venkatachalam, and R. G. Elliman, High-endurance megahertz electrical self-oscillation in Ti/ NbOx bilayer structures, Appl. Phys. Lett, vol.106, issue.21, p.212902, 2015.

P. Stoliar, A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator, Adv. Funct. Mater, vol.27, p.1604740, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01720928

M. Ignatov, M. Hansen, M. Ziegler, and H. Kohlstedt, Synchroniza-tion of two memristively coupled van der Pol oscillators, Appl. Phys. Lett, vol.108, issue.8, p.84105, 2016.

C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen et al., Nat. Mater, vol.7, p.298, 2008.

A. Ron and Y. Dagan, Phys. Rev. Lett, vol.112, p.136801, 2014.

A. Annadi, S. Lu, H. Lee, J. Lee, G. Cheng et al., Nano Lett, vol.18, pp.4473-4481, 2018.

Y. Matsubara, K. S. Takahashi, M. S. Bahramy, Y. Kozuka, D. Maryenko et al., Nature Communications, vol.7, p.11631, 2016.

F. Trier, G. E. Prawiroatmodjo, Z. C. Zhong, D. V. Christensen, M. Soosten et al., Phys. Rev. Lett, vol.117, p.96804, 2016.

G. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin et al., Nature Nanotechnology, vol.6, p.343, 2011.

G. Cheng, M. Tomczyk, S. Lu, J. P. Veazey, M. Huang et al., Nature, vol.521, p.196, 2015.

Q. Song, H. R. Zhang, T. Su, W. Yuan, Y. Y. Chen et al., Sci. Adv, vol.3, p.1602312, 2017.

D. P. Divincenzo, Fortschritte Der Physik-Progress of, Physics, vol.48, p.771, 2000.

S. Nadj-perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwen-hoven, Nature, vol.468, p.1084, 2010.

S. Goswami, E. Mulazimoglu, L. M. Vandersypen, and A. D. Cav-iglia, Nano Letters, vol.15, p.2627, 2015.

M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. H. Wang, Bulletin of the American Mathematical Society, vol.40, p.31, 2003.

V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. Bakkers et al., Science, vol.336, p.1003, 2012.

L. Fidkowski, R. M. Lutchyn, C. Nayak, and M. P. Fisher, Physical Review B, vol.84, p.195436, 2011.

I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys, vol.86, p.153, 2014.

T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van-diepen et al., Nature, vol.548, p.70, 2017.

G. Cheng, M. Tomczyk, A. B. Tacla, H. Lee, S. C. Lu et al., Physical Review X, vol.6, p.41042, 2016.

H. J. Swagten, Spin-Dependent Tunneling in Magnetic Junctions, Handbook of Magnetic Materials, vol.17, pp.1-121, 2007.

S. Yuasa and D. D. Djayaprawira, Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) bar-rier, J. Phys. D: Appl. Phys, vol.40, pp.337-354, 2007.

D. Mazumdar, W. Shen, X. Liu, B. D. Schrag, M. Carter et al., Field sensing characteristics of magnetic tunnel junctions with (001) MgO tunnel barrier, J. Appl. Phys, vol.103, p.113911, 2008.

R. Perricone, I. Ahmed, Z. Liang, M. G. Mankalale, X. S. Hu et al., Advanced spin-tronic memory and logic for non-volatile processors, Design, Automation Test in Europe Conference Exhibition, pp.972-977, 2017.

N. Locatelli, V. Cros, and J. Grollier, Spin-torque building blocks, Nat. Mater, vol.13, pp.11-20, 2013.

S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater, vol.3, pp.862-867, 2004.

M. Julliere, Tunneling between ferromagnetic films, Phys. Lett. A, vol.54, pp.225-226, 1975.

Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato et al., Giant tunneling magnetore-sistance in Co 2 MnSi/Al-O/Co 2 MnSi magnetic tunnel junctions, Appl. Phys. Lett, vol.88, p.192508, 2006.

W. Butler, X. Zhang, T. Schulthess, and J. Maclaren, Spin dependent tunneling conductance of FejMgOjFe sandwiches, Phys. Rev. B, vol.63, p.54416, 2001.

J. Mathon and A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/ MgO/Fe(001) junction, Phys. Rev. B, vol.63, p.220403, 2001.

, band?mate-rial=4296792753&calculation= 4611686018427389998?& ?method=system&condition=Fe&crystal_structure_ type=none&substance=6278?, 2017.

D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata et al., 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions, Appl. Phys. Lett, vol.86, p.92502, 2005.

S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura et al., Tunnel magnetore-sistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature, Appl. Phys. Lett, vol.93, p.82508, 2008.

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan et al., A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junc-tion, Nat. Mater, vol.9, pp.721-724, 2010.

H. Sukegawa, Y. Miura, S. Muramoto, S. Mitani, T. Niizeki et al., Enhanced tun-nel magnetoresistance in a spinel oxide barrier with cation-site disorder, Phys. Rev. B, vol.86, p.184401, 2012.

T. Scheike, H. Sukegawa, K. Inomata, T. Ohkubo, K. Hono et al., Chemical ordering and large tunnel magnetoresistance

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

, Appl. Phys. Express, vol.9, p.53004, 2016.

Y. Miura, S. Muramoto, K. Abe, and M. Shirai, First-principles study of tunneling magnetoresistance in Fe/MgAl 2 O 4 /Fe(001) magnetic tunnel junctions, Phys. Rev. B, vol.86, p.24426, 2012.

J. Zhang, X. Zhang, and X. F. Han, Spinel oxides: ? 1 spin-filter barrier for a class of magnetic tunnel junctions, Appl. Phys. Lett, vol.100, p.222401, 2012.

R. Shan, H. Sukegawa, W. Wang, M. Kodzuka, T. Furubayashi et al., Demonstration of Half-Metallicity in Fermi-Level-Tuned Heusler Alloy Co 2 -FeAl 0.5 Si 0.5 at Room Temperature, Phys. Rev. Lett, vol.102, p.246601, 2009.

H. Sukegawa, H. Xiu, T. Ohkubo, T. Furubayashi, T. Niizeki et al., Tunnel magne toresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl 2 O 4 /Fe(001) junctions, Appl. Phys. Lett, vol.96, p.212505, 2010.

C. M. Choi, H. Sukegawa, S. Mitani, and Y. H. Song, Reliability of magnetic tunnel junctions with a spinel MgAl 2 O 4 film, Electronics Lett, vol.53, pp.119-121, 2016.

N. S. Krishna, N. Doko, N. Matsuo, H. Saito, and S. Yuasa, Investigation on the formation process of single-crystalline GaOx barrier in Fe/GaOx/MgO/Fe magnetic tunnel junctions, J. Phys. D: Appl. Phys, vol.50, p.435001, 2017.

H. Sukegawa, Y. Kato, M. Belmoubarik, P. Cheng, T. Daibou et al., MgGa 2 O 4 spinel barrier for magnetic tunnel junctions: Coherent tunneling and low barrier height, Appl. Phys. Lett, vol.110, p.122404, 2017.

T. Scheike, H. Sukegawa, and S. Mitani, Li-substituted MgAl 2 O 4 barriers for spin-dependent coherent tunneling, Jpn. J. Appl. Phys, vol.55, p.110310, 2016.

K. Yakushiji, H. Takagi, N. Watanabe, A. Fukushima, K. Kikuchi et al., Three-dimensional integration technology of magnetic tunnel junctions for magnetoresistive random access memory application, Appl. Phys. Express, vol.10, p.63002, 2017.

J. Chen, J. Liu, Y. Sakuraba, H. Sukegawa, S. Li et al., Realiza-tion of high quality epitaxial current-perpendicular-to-plane giant magnetoresistive pseudo spin-valves on Si(001) wafer using NiAl buffer layer, APL Mater, vol.4, p.56104, 2016.

H. Sukegawa, S. Mitani, T. Niizeki, T. Ohkubo, K. Inomata et al., Epitaxial magnetic tunnel junctions with a monocrystalline Al 2 O 3 barrier, The 12th Joint MMM-Intermag Conference digest, AI-08, 2013.

S. Ikhtiar, P. Kasai, T. Cheng, Y. K. Ohkubo, T. Takahashi et al., Magnetic tunnel junctions with a rock-salt-type Mg 1-x Ti x O barrier for low resistance area product, Appl. Phys. Lett, vol.108, p.242416, 2016.

Y. Tserkovnyak, A. Brataas, and G. E. Bauer, Spin pumping and magnetization dynamics in metallic multilayers, Phys. Rev. B, vol.66, p.224403, 2002.

O. Mosendz, J. E. Pearson, F. Y. Fradin, G. E. Bauer, S. D. Bader et al., Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory, Phys. Rev. Lett, vol.104, p.46601, 2010.

K. Ando, Y. Kajiwara, K. Sasage, K. Uchida, and E. Saitoh, Inverse Spin-Hall Effect Induced by Spin Pumping in Various Metals, IEEE Trans Magn, vol.46, pp.3694-3696, 2010.

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae et al., Observation of the spin Seebeck effect, Nature, vol.455, pp.778-781, 2008.

J. Xiao, G. E. Bauer, K. Uchida, E. Saitoh, and S. Maekawa, Theory of magnon-driven spin Seebeck effect, Phys. Rev. B, vol.81, p.214418, 2010.

G. E. Bauer, E. Saitoh, and B. J. Van-wees, Spin caloritronics, vol.11, pp.391-399, 2012.

L. J. Cornelissen, J. Liu, R. A. Duine, J. B. Youssef, and B. J. Van-wees, Long-distance transport of magnon spin information in a magnetic insulator at room temperature, Nat. Phys, vol.11, pp.1022-1026, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01945678

S. T. Goennenwein, R. Schlitz, M. Pernpeintner, K. Ganzhorn, M. Althammer et al., Non-local magnetoresistance in YIG/Pt nanostructures, Appl. Phys. Lett, vol.107, p.172405, 2015.

H. Nakayama, M. Althammer, Y. Chen, K. Uchida, Y. Kaji-wara et al., Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect, Phys. Rev. Lett, vol.110, p.206601, 2013.

N. Vlietstra, J. Shan, V. Castel, B. J. Van-wees, and J. B. Youssef, Spin-Hall magnetoresistance in platinum on yttrium iron garnet: Dependence on platinum thickness and in-plane/out-of-plane magnetization, Phys Rev B, vol.87, p.184421, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01946164

Y. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. Goennenwein et al., Theory of spin Hall magnetoresistance, Phys. Rev. B, vol.87, p.144411, 2013.

A. B. Cahaya, O. A. Tretiakov, and G. E. Bauer, Spin Seebeck Power Conversion, IEEE Trans. Magn, vol.51, pp.1-14, 2015.

A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Magnon spintronics, Nat. Phys, vol.11, pp.453-461, 2015.

A. V. Chumak, A. A. Serga, and B. Hillebrands, Magnonic crystals for data processing, J. Phys. Appl. Phys, vol.50, p.244001, 2017.

B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt et al., Spin Pumping at the Magnetic Insulator (YIG)/Normal Metal (Au) Interfaces, Phys. Rev. Lett, vol.107, 2011.

C. Hahn, G. De-loubens, M. Viret, O. Klein, V. V. Naletov et al., Detection of Microwave Spin Pumping Using the Inverse Spin Hall Effect, Phys. Rev. Lett, vol.111, p.217204, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01946136

H. Jiao and G. E. Bauer, Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect, Phys. Rev. Lett, vol.110, p.217602, 2013.

K. Uchida, H. Adachi, T. An, T. Ota, M. Toda et al., Long-range spin Seebeck effect and acoustic spin pumping, Nat. Mater, vol.10, pp.737-741, 2011.

M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross et al., Spin Pumping with Coherent Elastic Waves, Phys. Rev. Lett, vol.108, p.176601, 2012.

A. Slachter, F. L. Bakker, J. Adam, and B. J. Van-wees, Thermally driven spin injection from a ferromagnet into a nonmagnetic metal, Nat. Phys, vol.6, pp.879-882, 2010.

M. Weiler, M. Althammer, F. D. Czeschka, H. Huebl, M. S. Wag-ner et al., Local Charge and Spin Currents in Magnetothermal Landscapes, Phys Rev Lett, vol.108, p.106602, 2012.

H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Theory of the spin Seebeck effect, Rep. Prog. Phys, vol.76, p.36501, 2013.

S. M. Rezende, R. L. Rodríguez-suárez, R. O. Cunha, A. R. Rodrigues, F. L. Machado et al., Magnon spin-current theory for the longitudinal spin-Seebeck effect, Phys. Rev. B, vol.89, p.14416, 2014.

C. Hahn, G. De-loubens, O. Klein, M. Viret, V. V. Naletov et al., Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta, Phys. Rev. B, vol.87, p.174417, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01946167

M. Althammer, S. Meyer, H. Nakayama, M. Schreier, S. Alt-mannshofer et al., Goen-nenwein, Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids, Phys. Rev. B, vol.87, p.224401, 2013.

M. I. Dyakonov and V. I. Perel, Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A, vol.35, issue.71, pp.90196-90200, 1971.

J. E. Hirsch, Spin Hall Effect, Phys. Rev. Lett, vol.83, pp.1834-1837, 1999.

A. Hoffmann, Spin Hall Effects in Metals, IEEE Trans. Magn, vol.49, pp.5172-5193, 2013.

J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jung-wirth, Rev. Mod. Phys, vol.87, pp.1213-1260, 2015.

D. Xiao, M. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys, vol.82, pp.1959-2007, 1959.

S. A. Bender and Y. Tserkovnyak, Interfacial spin and heat transfer between metals and magnetic insulators, Phys. Rev. B, vol.91, p.140402, 2015.

M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Pernpeint-ner et al., Experimental Test of the Spin Mixing Interface Conductivity Concept, Phys. Rev. Lett, vol.111, p.176601, 2013.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold et al., Terahertz spin current pulses controlled by magnetic heterostructures, Nat. Nanotechnol, vol.8, pp.256-260, 2013.

M. Weiler, J. M. Shaw, H. T. Nembach, and T. J. Silva, Phase-Sensitive Detection of Spin Pumping via the ac Inverse Spin Hall Effect, Phys. Rev. Lett, vol.113, p.157204, 2014.

R. Cheng, D. Xiao, and A. Brataas, Terahertz Antiferromagnetic Spin Hall Nano-Oscillator, Phys. Rev. Lett, vol.116, p.207603, 2016.

Ø. Johansen and A. Brataas, Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets, Phys. Rev. B, vol.95, p.220408, 2017.

S. Geprägs, A. Kehlberger, F. D. Coletta, Z. Qiu, E. Guo et al., Origin of the spin Seebeck effect in compensated ferrimagnets, Nat. Commun, vol.7, p.10452, 2016.

A. Kirihara, K. Uchida, Y. Kajiwara, M. Ishida, Y. Nakamura et al., Spin-current-driven thermoelectric coating, Nat. Mater, vol.11, pp.686-689, 2012.

S. Seki, T. Ideue, M. Kubota, Y. Kozuka, R. Takagi et al., Thermal Generation of Spin Current in an Antiferromagnet, Phys. Rev. Lett, vol.115, p.266601, 2015.

S. M. Wu, W. Zhang, A. Kc, P. Borisov, J. E. Pearson et al., Antiferromagnetic Spin Seebeck Effect, Phys. Rev. Lett, vol.116, p.97204, 2016.

S. M. Rezende, R. L. Rodríguez-suárez, and A. Azevedo, Theory of the spin Seebeck effect in antiferromagnets, Phys. Rev. B, vol.93, p.14425, 2016.

J. Holanda, D. S. Maior, O. Santos, L. H. Vilela-leão, J. B. Mendes et al., Applied Surface Science, vol.482, pp.1-93, 2019.

A. Azevedo, R. L. Rodríguez-suárez, and S. M. Rezende, Spin Seebeck effect in the antiferromagnet nickel oxide at room temperature, Appl. Phys. Lett, vol.111, p.172405, 2017.

M. Jamali, J. S. Lee, J. S. Jeong, F. Mahfouzi, Y. Lv et al., Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3, Nano Lett, vol.15, pp.7126-7132, 2015.

M. Sparks, Ferromagnetic-Relaxation Theory, 1964.

S. Demokritov, Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement, Phys. Rep, vol.348, issue.00, pp.116-118, 2001.

T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands, and H. Schultheiss, Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale, Condens. Matter Phys, vol.3, 2015.

L. J. Cornelissen, K. J. Peters, G. E. Bauer, R. A. Duine, and B. J. Van-wees, Magnon spin transport driven by the magnon chemical potential in a magnetic insulator, Phys. Rev. B, vol.94, p.14412, 2016.

J. Shan, P. Bougiatioti, L. Liang, G. Reiss, T. Kuschel et al., Nonlocal magnon spin transport in NiFe 2 O 4 thin films, Appl. Phys. Lett, vol.110, p.132406, 2017.

J. Liu, L. J. Cornelissen, J. Shan, T. Kuschel, and B. J. Van-wees, Magnon planar Hall effect and anisotropic magnetoresistance in a magnetic insulator, Phys. Rev. B, vol.95, p.140402, 2017.

K. Ganzhorn, S. Klingler, T. Wimmer, S. Geprägs, R. Gross et al., Magnon-based logic in a multiterminal YIG/Pt nanostructure, Appl. Phys. Lett, vol.109, p.22405, 2016.

S. Vélez, A. Bedoya-pinto, W. Yan, L. E. Hueso, and F. Casanova, Competing effects at Pt/YIG interfaces: Spin Hall magnetoresistance, magnon excitations, and magnetic frustration, Phys. Rev. B, vol.94, 2016.

J. Li, Y. Xu, M. Aldosary, C. Tang, Z. Lin et al., Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers, Nat. Commun, vol.7, p.10858, 2016.

S. S. Zhang and S. Zhang, Magnon Mediated Electric Current Drag Across a Ferromagnetic Insulator Layer, Phys. Rev. Lett, vol.109, p.96603, 2012.

S. S. Zhang and S. Zhang, Spin convertance at magnetic interfaces, Phys. Rev. B, vol.86, p.214424, 2012.

Y. Cheng, K. Chen, and S. Zhang, Interplay of magnon and electron currents in magnetic heterostructure, Phys. Rev. B, vol.96, p.24449, 2017.

J. Shan, L. J. Cornelissen, N. Vlietstra, J. Ben-youssef, T. Kuschel et al., Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons, Phys. Rev. B, vol.94, p.174437, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01945485

V. Cherepanov, I. Kolokolov, and V. , The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet, Phys. Rep, vol.229, pp.81-144, 1993.

Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa et al., Observation of the Magnon Hall Effect, Science, vol.329, pp.297-299, 2010.

T. An, V. I. Vasyuchka, K. Uchida, A. V. Chumak, K. Yamaguchi et al., Unidirectional spin-wave heat conveyer, Nat. Mater, vol.12, pp.549-553, 2013.

H. Wu, C. H. Wan, X. Zhang, Z. H. Yuan, Q. T. Zhang et al., Observation of magnon-mediated electric current drag at room temperature, Phys. Rev. B, vol.93, p.60403, 2016.

D. Wesenberg, T. Liu, D. Balzar, M. Wu, and B. L. Zink, Long-distance spin transport in a disordered magnetic insulator, Nat. Phys, vol.13, pp.987-993, 2017.

P. Pirro, T. Brächer, A. V. Chumak, B. Lägel, C. Dubs et al., Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers, Appl. Phys. Lett, vol.104, p.12402, 2014.

M. B. Jungfleisch, W. Zhang, W. Jiang, H. Chang, J. Sklenar et al., Spin waves in microstructured yttrium iron garnet nanometer-thick films, J. Appl. Phys, vol.117, 2015.

M. Collet, O. Gladii, M. Evelt, V. Bessonov, L. Soumah et al., Spinwave propagation in ultra-thin YIG based waveguides, Appl. Phys. Lett, vol.110, p.92408, 2017.

S. Maendl, I. Stasinopoulos, and D. Grundler, Spin waves with large decay length and few 100 nm wavelengths in thin yttrium iron garnet grown at the wafer scale, Appl. Phys. Lett, vol.111, p.12403, 2017.

A. Aqeel, N. Vlietstra, J. A. Heuver, G. E. Bauer, B. Noheda et al., Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr 2 O 4 films, Phys. Rev. B, vol.92, p.224410, 2015.

K. Ganzhorn, J. Barker, R. Schlitz, B. A. Piot, K. Ollefs et al., Spin Hall magnetoresistance in a canted ferrimagnet, Phys. Rev. B, vol.94, p.94401, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01986063

J. H. Han, C. Song, F. Li, Y. Y. Wang, G. Y. Wang et al., Antiferromagnet-controlled spin current transport in SrMnO3/Pt hybrids, Phys. Rev. B, vol.90, p.144431, 2014.

A. Manchon, Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers, Phys. Status Solidi RRL -Rapid Res. Lett, vol.11, p.1600409, 2017.

Y. Ji, J. Miao, K. K. Meng, Z. Y. Ren, B. W. Dong et al., Spin Hall magnetoresistance in an antiferromagnetic magnetoelectric Cr 2 O 3 /heavy-metal W heterostructure, Appl. Phys. Lett, vol.110, p.262401, 2017.

G. R. Hoogeboom, A. Aqeel, T. Kuschel, T. T. Palstra, and B. J. Van-wees, Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet NiO, Appl. Phys. Lett, vol.111, p.52409, 2017.

L. Baldrati, A. Ross, T. Niizeki, C. Schneider, R. Ramos et al., Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films, Phys. Rev. B, vol.98, 2018.

J. Fischer, O. Gomonay, R. Schlitz, K. Ganzhorn, N. Vlietstra et al., Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures, Phys. Rev. B, vol.97, p.14417, 2018.

C. O. Avci, A. Quindeau, C. Pai, M. Mann, L. Caretta et al., Current-induced switching in a magnetic insulator, Nat. Mater, vol.16, pp.309-314, 2016.

N. Thiery, A. Draveny, V. V. Naletov, L. Vila, J. P. Attané et al., Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque, Phys. Rev. B, vol.97, p.60409, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01614809

S. Takei and Y. Tserkovnyak, Nonlocal Magnetoresistance Mediated by Spin Superfluidity, Phys. Rev. Lett, vol.115, 2015.

V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov, and A. N. Slavin, Thermalization of a Parametrically Driven Magnon Gas Leading to Bose-Einstein Condensation, Phys. Rev. Lett, vol.99, p.37205, 2007.

S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga et al., Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping, Nature, vol.443, pp.430-433, 2006.

T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields et al., Purely antiferromagnetic magnetoelectric random access memory, Nat. Commun, vol.8, p.13985, 2017.

M. Hochberg and T. Baehr-jones, Towards fabless silicon photonics, vol.4, pp.492-494, 2010.

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry et al., Scaling silicon photonic switch fabrics for data center interconnection networks, Optics Express, vol.23, pp.1159-1175, 2015.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Silicon optical modulators, Nat. Photonics, vol.4, pp.518-526, 2010.

S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell et al., A strong electro-optically active lead-free ferroelectric integrated on silicon, Nat. Commun, vol.4, p.1671, 2013.

L. Mazet, S. M. Yang, S. V. Kalinin, S. Schamm-chardon, and C. Dubourdieu, A review of molecular beam epitaxy of ferroelectric BaTiO 3 films on Si, Ge and GaAs substrates and their applications, Sci. Technol. Adv. Mater, vol.16, issue.036005, pp.1-20, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489400

J. M. Vila-fungueiriño, R. Bachelet, G. Saint-girons, M. Gendry, M. Gich et al., Integration of functional complex oxide nanomaterials on silicon, vol.3, p.38, 2015.

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. Desalvo et al., High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz, Opt. Lett, vol.41, pp.5700-5703, 2016.

L. Chang, M. H. Pfeiffer, N. Volet, M. Zervas, J. D. Peters et al., Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon, Opt. Lett, vol.42, pp.803-806, 2017.

A. Yariv and P. Yeh, Optical Waves in Crystals, 1984.

P. Castera, D. Tulli, A. M. Gutierrez, and P. Sanchis, Influence of BaTiO 3 ferroelectric orientation for electro-optic modulation on silicon, Opt. Express, vol.23, pp.15332-15342, 2015.

K. J. Kormondy, Y. Popoff, M. Sousa, F. Eltes, D. Caimi et al., Microstructure and ferroelectricity of BaTiO 3 thin films on Si for integrated photonics, Nanotechnology, vol.28, p.75706, 2017.

C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah et al., Active silicon integrated nanophotonics: ferroelectric BaTiO 3 devices, Nano Lett, vol.14, pp.1419-1425, 2014.

P. Castera, A. M. Gutierrez, D. Tulli, S. Cueff, R. Orobtchouk et al., Electro-Optical Modulation Based on Pockels Effect in BaTiO 3 with a Multi-Domain Structure, IEEE Photonics Technol. Lett, vol.28, pp.990-993, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01489122

J. Lyu, S. Estandía, J. Gazquez, M. F. Chisholm, I. Fina et al., Control of Polar Orientation and Lattice Strain in Epitaxial BaTiO 3 Films on Silicon, ACS Appl. Mater. Interfaces, vol.10, pp.25529-25535, 2018.

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera et al., Large Pockels effect in micro-and nano-structured barium titanate integrated on silicon, Nature Materials, vol.18, pp.42-47, 2019.

R. M. Briggs, I. M. Pryce, and H. A. Atwater, Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition, Opt. Exp, vol.18, pp.11192-11201, 2010.

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductorto-metal transition, Opt. Exp, vol.21, pp.438-446, 2013.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison et al., Wavelength-size hybrid Si-VO 2 waveguide electroabsorption optical switches and photodetectors, Opt. Exp, vol.23, pp.3657-3668, 2015.

P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund et al., Optically monitored electrical switching in VO 2, ACS Photonics, vol.2, pp.1175-1182, 2015.

L. Sanchez, S. Lechago, A. Gutierrez, and P. Sanchis, Analysis and Design Optimization of a Hybrid VO2/Silicon 2 X 2 Microring Switch, IEEE Photonics Journal, vol.8, p.7802709, 2016.

L. Sanchez, A. Rosa, A. Griol, A. Gutierrez, P. Homm et al., Impact of the external resistance on the switching power consumption in VO 2 nano gap junctions, Appl. Phys. Lett, vol.111, p.31904, 2017.

K. Shibuya and A. Sawa, Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition, AIP Advances, vol.5, p.107118, 2015.

E. Feigenbaum, K. Diest, and H. A. Atwater, Unity-order index change in transparent conducting oxides at visible frequencies, Nano Lett, vol.10, pp.2111-2116, 2010.

A. P. Vasudev, J. Kang, J. Park, X. Liu, and M. L. Brongersma, Electro-optical modulation of a silicon waveguide with an 'epsilon-near-zero' material, Opt. Express, vol.21, p.26387, 2013.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch et al., Nanoscale Conducting Oxide PlasMOStor, vol.14, pp.6463-6468, 2014.

H. Zhao, Y. Wang, A. Capretti, L. Negro, and J. Klamkin, Broadband electroabsorption modulators design based on epsilonnear-zero indium tin oxide, IEEE J. Sel. Top. Quantum Electron, vol.21, p.3300207, 2015.

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl et al., The plasmonic memristor: a latching optical switch, Optica, vol.1, pp.198-202, 2014.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-jones et al., Deep learning with coherent nanophotonic circuits, Nat. Photonics, vol.11, pp.441-447, 2017.

A. Perez-tomas, A. Mingorance, Y. Reyna, and M. Lira-cantu, Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells, p.566, 2017.

M. Lira-cantu, The future of semiconductor oxides in next generation solar cells, 2017.

X. Yu, T. J. Marks, and A. Facchetti, Metal oxides for optoelectronic applications, Nat Mater, vol.15, pp.383-396, 2016.

Y. Que, J. Weng, L. Hu, and S. Dai, Applications of titanium dioxide in perovskite solar cells, Progress in Chemistry, vol.28, pp.40-50, 2016.

W. Guo, Z. Xu, F. Zhang, S. Xie, H. Xu et al., Recent Development of Transparent Conducting Oxide-Free Flexible Thin-Film Solar Cells, Adv. Funct. Mater, vol.26, pp.8855-8884, 2016.

K. Singh, J. Nowotny, and V. Thangadurai, Amphoteric oxide semiconductors for energy conversion devices: A tutorial review, Chemical Society Reviews, vol.42, pp.1961-1972, 2013.

I. Gonzalez-valls and M. Lira-cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review, Energy & Environmental Science, vol.2, pp.19-34, 2009.

Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang et al., Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell, Journal of the American Chemical Society, vol.139, pp.7302-7309, 2017.

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya et al., A polymer tandem solar cell with 10.6% power conversion efficiency, Nature Communications, vol.4, p.1446, 2013.

M. Vasilopoulou, E. Polydorou, A. M. Douvas, L. C. Palilis, S. Kennou et al., Annealing-free highly crystalline solutionprocessed molecular metal oxides for efficient singlejunction and tandem polymer solar cells, Energy & Environmental Science, vol.8, pp.2448-2463, 2015.

T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu et al., Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency, Advanced Energy Materials

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen et al., 6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nature Energy, vol.23, p.17009, 2017.

W. A. Dunlap-shohl, T. B. Daunis, X. Wang, J. Wang, B. Zhang et al., Room-temperature fabrication of a delafossite CuCrO 2 hole transport layer for perovskite solar cells, Journal of Materials Chemistry A, vol.6, pp.469-477, 2018.

J. Wang, Y. Lee, and J. W. Hsu, Sub-10 nm copper chromium oxide nanocrystals as a solution processed p-type hole transport layer for organic photovoltaics, Journal of Materials Chemistry C, vol.4, pp.3607-3613, 2016.

M. Yu, T. I. Draskovic, and Y. Wu, Cu(i)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells, Physical Chemistry Chemical Physics, vol.16, pp.5026-5033, 2014.

Z. Xu, D. Xiong, H. Wang, W. Zhang, X. Zeng et al., Remarkable photocurrent of p-type dyesensitized solar cell achieved by size controlled CuGaO 2 nanoplates, Journal of Materials Chemistry A, vol.2, pp.2968-2976, 2014.

D. Xiong, Z. Xu, X. Zeng, W. Zhang, W. Chen et al., Hydrothermal synthesis of ultrasmall CuCrO 2 nanocrystal alternatives to NiO nanoparticles in efficient ptype dye-sensitized solar cells, Journal of Materials Chemistry, vol.22, pp.24760-24768, 2012.

J. Wang, V. Ibarra, D. Barrera, L. Xu, Y. Lee et al., Solution Synthesized p-Type Copper Gallium Oxide Nanoplates as Hole Transport Layer for Organic Photovoltaic Devices, The Journal of Physical Chemistry Letters, vol.6, pp.1071-1075, 2015.

H. Zhang, H. Wang, W. Chen, and A. K. Jen, CuGaO 2 : A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells, Advanced Materials, vol.29, 2017.

M. Yu, G. Natu, Z. Ji, and Y. Wu, p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO 2 Nanoplates with Saturation Photovoltages Exceeding 460 mV, The Journal of Physical Chemistry Letters, vol.3, pp.1074-1078, 2012.

Y. Hou, X. Du, S. Scheiner, D. P. Mcmeekin, Z. Wang et al., A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells, Science, 2017.

X. Li, F. Hao, X. Zhao, X. Yin, Z. Yao et al., Rational Design of Solution-Processed Ti-Fe-O Ternary Oxides for Efficient Planar

, Perovskite Solar Cells with Suppressed Hysteresis, ACS Applied Materials & Interfaces, vol.9, pp.34833-34843, 2017.

H. Aqoma, R. Azmi, S. Oh, and S. Jang, Solution-processed colloidal quantum dot/organic hybrid tandem photovoltaic devices with 8.3% efficiency, Nano Energy, vol.31, pp.403-409, 2017.

J. Werner, B. Niesen, and C. Ballif, Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? -An Overview, Advanced Materials Interfaces, vol.5, 2018.

A. Guchhait, H. A. Dewi, S. W. Leow, H. Wang, G. Han et al., Over 20% Efficient CIGS-Perovskite Tandem Solar Cells, ACS Energy Letters, vol.2, pp.807-812, 2017.

A. Pérez-tomás, M. Lira-cantú, and G. Catalan, Above-Bandgap Photovoltages in Antiferroelectrics, Advanced Materials, vol.28, pp.9644-9647, 2016.

R. Nechache, C. Harnagea, L. Lis, W. Cardenas, J. Huang et al., Bandgap tuning of multiferroic oxide solar cells, Nat Photon, vol.9, pp.61-67, 2015.

S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim et al., Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science, vol.356, pp.167-171, 2017.

D. Cao, C. Wang, F. Zheng, L. Fang, W. Dong et al., Understanding the nature of remnant polarization enhancement, coercive voltage offset and time-dependent photocurrent in ferroelectric films irradiated by ultraviolet light, Journal of Materials Chemistry, vol.22, pp.12592-12598, 2012.

Y. Reyna, A. Pérez-tomás, A. Mingorance, and M. Lira-cantú, Stability of Molecular Devices: Halide Perovskite Solar Cells, Green Chemistry and Sustainable Technology, 2018.

S. Venkatesan, E. Ngo, D. Khatiwada, C. Zhang, and Q. Qiao, Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers, ACS Applied Materials & Interfaces, vol.7, pp.16093-16100, 2015.

K. Zilberberg, H. Gharbi, A. Behrendt, S. Trost, and T. , Low-Temperature, Solution-Processed MoO x for Efficient and Stable Organic Solar Cells, ACS Applied Materials & Interfaces, vol.4, pp.1164-1168, 2012.

G. Teran-escobar, J. Pampel, J. M. Caicedo, and M. Lira-cantu, Lowtemperature, solution-processed, layered V 2 O 5 hydrate as the hole-transport layer for stable organic solar cells, Energy & Environmental Science, vol.6, pp.3088-3098, 2013.

Y. Wang, T. Mahmoudi, W. Rho, H. Yang, S. Seo et al., Ambient-air-solution-processed efficient and highly stable perovskite solar cells based on CH 3 -NH 3 PbI 3 -x Cl x -NiO composite with Al 2 O 3 /NiO interfacial engineering, Nano Energy, pp.408-417, 2017.

J. You, L. Meng, T. B. Song, T. F. Guo, W. H. Chang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nature Nanotechnology, vol.11, pp.75-81, 2016.

H. Back, G. Kim, J. Kim, J. Kong, T. K. Kim et al., Achieving long-term stable perovskite solar cells via ion neutralization, Energy & Environmental Science, vol.9, pp.1258-1263, 2016.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers, Science, vol.350, pp.944-948, 2015.

G. Grancini, C. Roldán-carmona, I. Zimmermann, E. Mosconi, X. Lee et al., One-Year stable perovskite solar cells by 2D/3D interface engineering, Nature Communications, vol.8, p.15684, 2017.

M. Lira-cantú, Perovskite solar cells: Stability lies at interfaces, Nature Energy, vol.2, 2017.

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

M. Xiao, M. Gao, F. Huang, A. R. Pascoe, T. Qin et al., Efficient Perovskite Solar Cells Employing Inorganic Interlayers, ChemNanoMat, vol.2, pp.182-188, 2016.

I. Bretos, R. Jiménez, J. Ricote, and M. L. Calzada, Synthesis by low temperature solution processing of ferroelectric perovskite oxide thin films as candidate materials for photovoltaic applications, p.566, 2017.

S. P. Pujari, L. Scheres, A. T. Marcelis, and H. Zuilhof, Covalent Surface Modification of Oxide Surfaces, Angewandte Chemie International Edition, vol.53, pp.6322-6356, 2014.

E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Slow charge recombination in dye-sensitised solar cells (DSSC) using Al 2 O 3 coated nanoporous TiO 2 films, Chemical Communications, pp.1464-1465, 2002.

D. Cao, C. Wang, F. Zheng, W. Dong, L. Fang et al., High-Efficiency Ferroelectric-Film Solar Cells with an n-type Cu 2 O Cathode Buffer Layer, Nano Letters, vol.12, pp.2803-2809, 2012.

W. Huang, C. Harnagea, D. Benetti, M. Chaker, F. Rosei et al., Multiferroic Bi 2 FeCrO 6 based p-i-n heterojunction photovoltaic devices, Journal of Materials Chemistry A, vol.5, pp.10355-10364, 2017.

M. Tadatsugu, N. Yuki, and M. Toshihiro, Efficiency enhancement using a Zn 1-x Ge x -O thin film as an n-type window layer in Cu 2 O-based heterojunction solar cells, Applied Physics Express, vol.9, p.52301, 2016.

A. Pérez-tomas, H. Xie, Z. Wang, H. Kim, I. Shirley et al., PbZrTiO 3 Ferroelectric Oxide as electron extraction material in Halide Perovskite Solar Cells, Sustainable Energy & Fuels, 2018.

P. V. Kamat, Meeting the clean energy demand: Nanoestructure Architectures for Solar Energy Conversion, Phys. Chem, vol.392, pp.2834-2860, 2007.

L. C. Olsen, F. W. Addis, and W. Miller, Experimental and theoretical studies of Cu 2 O solar cells, Sol. Cells, vol.7, issue.3, pp.247-279, 1982.

L. C. Olsen, R. C. Bohara, and M. W. Urie, Explanation for lowefficiency Cu 2 O Schottkybarrier solar cells, Appl. Phys. Lett, vol.34, issue.1, pp.47-49, 1979.

R. E. Brandt, M. Young, H. H. Park, A. Dameron, D. Chua et al., Band offsets of n-type electron-selective contacts on cuprous oxide (Cu 2 O) for photovoltaics, Appl. Phys. Lett, vol.105, issue.26, 2014.

S. S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, Electrodeposited ZnO/ Cu 2 O heterojunction solar cells, Electrochim. Acta, vol.53, issue.5, pp.2226-2231, 2008.

T. Minami, Y. Nishi, T. Miyata, and J. I. Nomoto, High-efficiency oxide solar cells with ZnO/Cu 2 O heterojunction fabricated on thermally oxidized Cu 2 O sheets, Appl. Phys. Express, vol.4, issue.6, pp.2-5, 2011.

T. Minami, Y. Nishi, and T. Miyata, Impact of incorporating sodium into polycrystalline p-type Cu 2 O for heterojunction solar cell applications, Appl. Phys. Lett, vol.212104, pp.1-6, 2014.

S. Ishizuka, K. Shinya, T. Maruyama, and K. Akimoto, Nitrogen Doping into Cu 2 O Thin Films Deposited by Reactive Radio-Frequency Magnetron Sputtering Nitrogen Doping into Cu 2 O Thin Films Deposited by Reactive Radio-Frequency Magnetron Sputtering, Jpn. J. Appl. Phys, vol.40, pp.2765-2768, 2001.

D. O. Scanlon and G. W. Watson, Undoped n-type Cu 2 O: Fact or fiction?, J. Phys. Chem. Lett, vol.1, issue.17, pp.2582-2585, 2010.

J. N. Nian, C. C. Tsai, P. C. Lin, and H. Teng, Elucidating the Conductivity-Type Transition Mechanism of p-Type Cu 2 O Films from Electrodeposition, J. Electrochem. Soc, vol.156, issue.7, p.567, 2009.

F. Biccari, C. Malerba, and A. Mittiga, Chlorine doping of Cu 2 O, Sol. Energy Mater. Sol. Cells, vol.94, pp.1947-1952, 2010.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Heterojunction solar cell with 2% efficiency based on a Cu 2 O substrate, Appl. Phys. Lett, vol.88, pp.12-14, 2006.

B. D. Yuhas and P. Yang, Nanowire-based all-oxide solar cells, J. Am. Chem. Soc, vol.131, issue.10, pp.3756-3761, 2009.

W. Jia, H. Dong, J. Zhao, S. Dang, Z. Zhang et al., PCu 2 O/n-ZnO heterojunction fabricated by hydrothermal method, Appl. Phys. A Mater. Sci. Process, vol.109, issue.3, pp.751-756, 2012.

K. P. Musselman, A. Marin, L. Schmidt-mende, and J. L. Macmanus-driscoll, Incompatible length scales in nanostructured Cu 2 O solar cells, Adv. Funct. Mater, vol.22, pp.2202-2208, 2012.

T. Minami, Y. Nishi, and T. Miyata, High-Efficiency Cu 2 O-Based Heterojunction Solar Cells Fabricated Using a Ga 2 O 3 Thin Film as N-Type Layer, Appl. Phys. Express, vol.6, issue.4, p.44101, 2013.

Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li et al., Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells, Adv. Mater, vol.26, issue.27, pp.4704-4710, 2014.

T. Minami, Y. Nishi, and T. Miyata, Cu 2 O-based solar cells using oxide semiconductors, J. Semicond, vol.37, issue.1, p.14002, 2016.

T. Minami, Y. Nishi, and T. Miyata, Efficiency enhancement using a Zn1-xGex-O thin film as an n-type window layer in Cu 2 O-based heterojunction solar cells, Appl. Phys. Express, vol.9, p.52301, 2016.

R. G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bull, vol.25, issue.08, pp.52-57, 2000.

A. Klein, C. Körber, A. Wachau, F. Säuberlich, Y. Gassenbauer et al., Transparent conducting oxides for photovoltaics: Manipulation of fermi level,work function and energy band alignment, Materials, vol.3, issue.11, pp.4892-4914, 2010.

S. Siol, J. C. Hellmann, S. D. Tilley, M. Graetzel, J. Morasch et al., Band Alignment Engineering at Cu 2 O/ZnO Heterointerfaces, ACS Appl. Mater. Interfaces, vol.8, issue.33, pp.21824-21831, 2016.

A. E. Gunnaes, S. Gorantla, M. O. Løvvik, J. Gan, P. A. Carvalho et al., Epitaxial Strain-Induced Growth of CuO at Cu 2 O/ZnO Interfaces, J. Phys. Chem, vol.120, pp.23552-23558, 2016.

X. Obradors, T. Puig, A. Pomar, F. Sandiumenge, S. Piñol et al., Chemical solution deposition: a path towards low cost coated conductors, Supercond. Sci. Technol, vol.17, pp.1055-1064, 2004.

V. Musat, B. Teixeira, E. Fortunato, R. C. Monteiro, and P. Vilarinho, Al-doped ZnO thin films by sol-gel method, Surf. Coatings Technol, pp.659-662, 2004.

M. Pavan, S. Rühle, A. Ginsburg, D. A. Keller, H. N. Barad et al., TiO 2 /Cu 2 O all-oxide heterojunction solar cells produced by spray pyrolysis, Sol. Energy Mater. Sol. Cells, vol.132, pp.549-556, 2015.

M. Vilardell, X. Granados, S. Ricart, I. Van-driessche, A. Palau et al., Flexible manufacturing of functional ceramic coatings by inkjet printing, Thin Solid Films, vol.548, pp.489-497, 2013.

S. H. Wee, P. S. Huang, J. K. Lee, and A. Goyal, Heteroepitaxial Cu 2 O thin film solar cell on metallic substrates, Sci. Rep, vol.5, p.16272, 2015.

R. Haight, W. Haensh, and D. Friedman, Solar-powering the Internet of Things, Science, vol.353, issue.6295, pp.2-4, 2016.

Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt et al., Ultrathin amorphous zinc-tin-oxide buffer layer for enancing heterojunction interface quality in metal-oxide solar cells, Energy Environ. Sci, vol.6, pp.2112-2118, 2013.

S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices, vol.5, pp.143-147, 2010.

T. Choi, S. Lee, Y. Choi, V. Kiryukhin, and S. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO 3, Science, vol.324, pp.63-66, 2009.

W. Ji, K. Yao, and Y. C. Liang, Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO 3 thin films, Adv. Mater, vol.22, pp.1763-1766, 2010.

R. Guo, L. You, Y. Zhou, Z. S. Lim, X. Zou et al., Nonvolatile memory based on the ferroelectric photovoltaic effect, Nat. Commun, vol.4, 1990.

Z. Xiao, B. Yang, and J. Huang, Arising applications of ferroelectric materials in photovoltaic devices, J. Mater. Chem. A, vol.2, pp.6027-6041, 2014.

J. Seidel and L. M. Eng, Shedding light on nanoscale ferroelectrics, Curr. Appl Phys, vol.14, pp.1083-1091, 2014.

K. T. Butler, J. M. Frost, and A. Walsh, Ferroelectric materials for solar energy conversion: photoferroics revisited, Energy Environ. Sci, vol.8, pp.838-848, 2015.

C. Paillard, X. Bai, I. C. Infante, M. Guennou, G. Geneste et al., Photovoltaics with Ferroelectrics: Current Status and Beyond, vol.28, pp.5153-5168, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385066

P. Lopez-varo, L. Bertoluzzi, J. Bisquert, M. Alexe, M. Coll et al., Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion, Phys. Rep, vol.653, pp.1-40, 2016.

B. Kundys, M. Viret, D. Colson, and D. Kundys, Light-induced size changes in BiFeO 3 crystals, Nat. Mat, vol.9, pp.803-805, 2010.

I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials, Nature, vol.503, pp.509-512, 2013.

R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang et al., Bandgap tuning of multiferroic oxide solar cells, Nat. Photonics, vol.9, pp.61-67, 2015.

W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, G. E. Jellison et al., Wide bandgap tunability in complex transition metal oxides by site-specific substitution, Nat. Commun, vol.3, p.689, 2012.

J. Chakrabartty, R. Nechache, C. Harnagea, and F. Rosei, Photovoltaic effect in multiphase Bi-Mn-O thin films, Opt. Express, vol.22, pp.80-89, 2014.

J. Chakrabartty, R. Nechache, C. Harnagea, S. Li, and F. Rosei, Enhanced photovoltaic properties in bilayer BiFeO 3 /Bi-Mn-O thin films, Nanotechnology, vol.27, p.215402, 2016.

Y. Sun, F. Guo, J. Chen, and S. Zhao, Improved ferroelectric and photovoltaic properties of BiMnO3 modified lead-free K0.5Na0.5NbO 3 solid-solution films, Appl. Phys. Lett, vol.111, p.253901, 2017.

X. Huang, T. R. Paudel, S. Dong, and E. Y. , Hexagonal rare earth manganites as promising photovoltaics and light polarizers, Phys. Rev. B, vol.92, p.125201, 2015.

H. Han, S. Song, J. H. Lee, K. J. Kim, G. Kim et al., Switchable Photovoltaic Effects in Hexagonal Manganite Thin Films Having Narrow Band Gaps, Chem. Mater, vol.27, pp.7425-7432, 2015.

P. J. Sturman, Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials, 1992.

S. M. Young and A. M. Rappe, First principles calculation of the shift current photovoltaic effect in ferroelectrics, Phys. Rev. Lett, vol.109, p.116601, 2012.

S. M. Young, F. Zheng, and A. M. Rappe, First-principles calculation of the bulk photovoltaic effect in bismuth ferrite, Phys. Rev. Lett, vol.109, p.236601, 2012.

A. Glass, D. Von-der-linde, and T. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO 3, Appl. Phys. Lett, vol.25, pp.233-235, 1974.

W. Koch, R. Munser, W. Ruppel, and P. Würfel, Solid State Commun, vol.3, pp.847-850, 1975.

M. Alexe and D. Hesse, Tip-enhanced photovoltaic effects in bismuth ferrite, Nat. Commun, vol.2, p.256, 2011.

M. , Local mapping of generation and recombination lifetime in BiFeO 3

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

, single crystals by scanning probe photoinduced transient spectroscopy, Nano Lett, vol.12, pp.2193-2198, 2012.

A. Bhatnagar, A. R. Chaudhuri, Y. H. Kim, D. Hesse, and M. , Role of domain walls in the abnormal photovoltaic effect in BiFeO 3, Nat. Commun, vol.4, p.2835, 2013.

A. Zenkevich, Y. Matveyev, K. Maksimova, R. Gaynutdinov, A. Tolstikhina et al., Giant bulk photovoltaic effect in thin ferroelectric BaTiO 3 films, Phys. Rev. B, vol.90, p.161409, 2014.

J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akbashev, A. Polemi et al., Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator, Nat. Photonics, vol.10, pp.611-616, 2016.

Z. Gu, D. Imbrenda, A. L. Bennett-jackson, M. Falmbigl, A. Podpirka et al., Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator, Phys. Rev. Lett, vol.118, p.96601, 2017.

V. Fridkin, Bulk photovoltaic effect in noncentrosymmetric crystals, Crystallogr. Rep, vol.46, pp.654-658, 2001.

A. P. Kirk and D. W. Cardwell, Reconsidering the Shockley-Queisser limit of a ferroelectric insulator device, Nat. Photonics, vol.11, pp.329-329, 2017.

H. Lu, C. Bark, D. De-los-ojos, J. Alcala, C. B. Eom et al., Mechanical Writing of Ferroelectric Polarization, Science, vol.336, pp.59-61, 2012.

A. Tagantsev and G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films, J. Appl. Phys, vol.100, p.51607, 2006.

Y. S. Yang, S. J. Lee, S. Yi, B. G. Chae, S. H. Lee et al., Schottky barrier effects in the photocurrent of sol-gel derived lead zirconate titanate thin film capacitors, Appl. Phys. Lett, vol.76, pp.774-776, 2000.

L. Pintilie, V. Stancu, E. Vasile, and I. Pintilie, About the complex relation between short-circuit photocurrent, imprint and polarization in ferroelectric thin films, J. Appl. Phys, vol.107, p.114111, 2010.

J. Zhang, X. Su, M. Shen, Z. Dai, L. Zhang et al., Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects, Sci. Rep, vol.3, p.2109, 2013.

M. Qin, K. Yao, and Y. C. Liang, High efficient photovoltaics in nanoscaled ferroelectric thin films, Appl. Phys. Lett, vol.93, p.122904, 2008.

M. Qin, K. Yao, and Y. C. Liang, Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces, Appl. Phys. Lett, vol.95, p.22912, 2009.

A. Kholkin, O. Boiarkine, and N. Setter, Transient photocurrents in lead zirconate titanate thin films, Appl. Phys. Lett, vol.72, pp.130-132, 1998.

D. Lee, S. Baek, T. Kim, J. Yoon, C. Folkman et al., Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects, Phys. Rev. B, vol.84, p.125305, 2011.

H. Yi, T. Choi, S. Choi, Y. S. Oh, and S. W. Cheong, Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO 3, Adv. Mater, vol.23, pp.3403-3407, 2011.

F. Wang, S. M. Young, F. Zheng, I. Grinberg, and A. M. Rappe, Substantial bulk photovoltaic effect enhancement via nanolayering, Nat. Commun, vol.7, p.10419, 2016.

J. Chakrabartty, R. Nechache, S. Li, M. Nicklaus, A. Ruediger et al., Photovoltaic Properties of Multiferroic BiFeO 3 /BiCrO 3 Heterostructures, J. Am. Ceram. Soc, vol.97, pp.1837-1840, 2014.

B. Kundys, Photostrictive materials, Applied Physics Reviews, vol.2, p.11301, 2015.

P. Poosanaas and K. Uchino, Photostrictive effect in lanthanummodified lead zirconate titanate ceramics near the morphotropic phase boundary, Mater. Chem. Phys, vol.61, pp.36-41, 1999.

P. Poosanaas, A. Dogan, S. Thakoor, and K. Uchino, Influence of sample thickness on the performance of photostrictive ceramics, J. Appl. Phys, vol.84, pp.1508-1512, 1998.

K. Uchino, New applications of photostrictive ferroics, vol.1, pp.163-168, 1997.

S. Chu, Z. Ye, and K. Uchino, Impurity doping effect on photostriction in PLZT ceramics, Advanced Performance Materials, vol.1, pp.129-143, 1994.

B. Kundys, M. Viret, C. Meny, V. Costa, D. Colson et al., Wavelength dependence of photoinduced deformation in BiFeO 3, Phys. Rev. B, vol.85, p.92301, 2012.

V. Iurchuk, D. Schick, J. Bran, D. Colson, A. Forget et al., Optical Writing of Magnetic Properties by Remanent Photostriction, Phys. Rev. Lett, vol.117, p.107403, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01484048

Y. Li, C. Adamo, P. Chen, P. Evans, S. Nakhmanson et al., Giant optical enhancement of strain gradient in ferroelectric BiFeO 3 thin films and its physical origin, Sci. Rep, vol.5, pp.16650-16650, 2015.

D. Schick, M. Herzog, H. Wen, P. Chen, C. Adamo et al., Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO, Phys. Rev. Lett, vol.3, p.97602, 2014.

H. Wen, P. Chen, M. P. Cosgriff, D. A. Walko, J. H. Lee et al., Electronic origin of ultrafast photoinduced strain in BiFeO 3, Phys. Rev. Lett, vol.110, p.37601, 2013.

D. Daranciang, M. J. Highland, H. Wen, S. M. Young, N. C. Brandt et al., Ultrafast photovoltaic response in ferroelectric nanolayers, Phys. Rev. Lett, vol.108, p.87601, 2012.

P. Ruello, T. Pezeril, S. Avanesyan, G. Vaudel, V. Gusev et al., Photoexcitation of gigahertz longitudinal and shear acoustic waves in BiFeO 3 multiferroic single crystal, Appl. Phys. Lett, vol.100, p.212906, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00708512

M. Lejman, G. Vaudel, I. C. Infante, P. Gemeiner, V. E. Gusev et al., Giant ultrafast photo-induced shear strain in ferroelectric BiFeO 3, Nat. Commun, vol.5, p.4301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01245035

S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells, Solar Energy, vol.130, pp.139-147, 2016.

W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys, vol.32, pp.510-519, 1961.

W. Dong, Y. Guo, B. Guo, H. Liu, H. Li et al., Photovoltaic properties of BiFeO 3 thin film capacitors by using Al-doped zinc oxide as top electrode, Mater. Lett, vol.91, pp.359-361, 2013.

M. Tyunina, J. Narkilahti, M. Plekh, R. Oja, R. M. Nieminen et al., Evidence for strain-induced ferroelectric order in epitaxial thin-film KTaO 3, Phys. Rev. Lett, vol.104, p.227601, 2010.

B. Jaffe, Piezoelectric ceramics, 2012.

A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Van-de-krol et al., Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells, Nat. Photonics, vol.8, pp.250-255, 2014.

A. Guerrero, L. F. Marchesi, P. P. Boix, S. Ruiz-raga, T. Ripolles-sanchis et al., How the chargeneutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells, ACS nano, vol.6, pp.3453-3460, 2012.

Y. Cui, J. Briscoe, and S. Dunn, Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO 3 Influence on the Carrier Separation and Stern Layer Formation, Chem. Mater, vol.25, pp.4215-4223, 2013.

C. Paillard, B. Xu, B. Dkhil, G. Geneste, and L. Bellaiche, Photostriction in Ferroelectrics from Density Functional Theory, Phys. Rev. Lett, vol.116, p.247401, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01384990

R. Haleoot, C. Paillard, T. P. Kaloni, M. Mehboudi, B. Xu et al., Photostrictive two-dimensional materials in the monochalcogenide family, Phys. Rev. Lett, vol.118, p.227401, 2017.

C. Paillard, S. Prosandeev, and L. Bellaiche, Ab initio approach to photostriction in classical ferroelectric materials, Phys. Rev. B, vol.96, p.45205, 2017.

A. Subedi, Proposal for ultrafast switching of ferroelectrics using midinfrared pulses, Phys. Rev. B, vol.92, p.214303, 2015.

R. Mankowsky, A. Hoegen, M. Först, and A. Cavalleri, Ultrafast reversal of the ferroelectric polarization, Phys. Rev. Lett, vol.118, 2017.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc, vol.131, pp.6050-6051, 2009.

A. Babayigit, D. D. Thanh, A. Ethirajan, J. Manca, M. Muller et al., Assessing the toxicity of Pb-and Snbased perovskite solar cells in model organism Danio rerio, Sci. Rep, vol.6, p.18721, 2016.

J. A. Selvan, A. E. Delahoy, S. Guo, and Y. Li, A new light trapping TCO for nc-Si:H solar cells, vol.90, pp.3371-3376, 2006.

E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, Transparent Conducting Oxides for Photovoltaics, MRS Bull, vol.32, pp.242-247, 2007.

C. Sung, A Modified Transparent Conducting Oxide for Flat Panel Displays Only, Jpn. J. Appl. Phys, vol.40, pp.1282-1286, 2001.

S. H. Chuang, C. S. Tsung, C. H. Chen, S. L. Ou, R. H. Horng et al., Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications, ACS Appl. Mater. Interfaces, vol.7, pp.2546-2553, 2015.

Y. Tak, K. Kim, H. Park, K. Lee, and J. Lee, Criteria for ITO (indium-tinoxide) thin film as the bottom electrode of an organic light emitting diode, Thin Solid Films, vol.411, pp.12-16, 2002.

H. Ohta and H. Hosono, Transparent oxide optoelectronics, Mater. Today, vol.7, pp.42-51, 2004.

M. Tadatsugu, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol, vol.20, pp.35-44, 2005.

C. Guillén and J. Herrero, TCO/metal/TCO structures for energy and flexible electronics, Thin Solid Films, vol.520, pp.1-17, 2011.

Z. Chen, B. Cotterell, and W. Wang, The fracture of brittle thin films on compliant substrates in flexible displays, Eng Fract Mech, vol.69, pp.597-603, 2002.

H. Sato, T. Minami, S. Takata, and T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films, vol.236, pp.27-31, 1993.

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi et al., P-type electrical conduction in transparent thin films of CuAlO 2, Nature, vol.389, pp.939-942, 1997.

N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, Easily doped ptype, low hole effective mass, transparent oxides, Sci. Rep, vol.6, issue.1-9, p.20446, 2016.

A. Barnabe, Y. Thimont, M. Lalanne, L. Presmanes, and P. Tailhades, p-Type conducting transparent characteristics of delafossite Mg-doped CuCrO 2 thin films prepared by RF-sputtering, J. Mater. Chem. C, vol.3, pp.6012-6024, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01167277

S. Nandy, G. Goncalves, J. V. Pinto, T. Busani, V. Figueiredo et al., Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars, Nanoscale, vol.5, pp.11699-11709, 2013.

H. Hiramatsu, H. Kamioka, K. Ueda, H. Ohta, T. Kamiya et al., Opto-electronic properties and light-emitting device application of widegap layered oxychalcogenides: LaCuOCh (Ch = chalcogen) and La 2 CdO 2 Se 2, phys. stat. sol. (a), pp.2800-2811, 2006.

M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, XPS and Xray diffraction studies of aluminum-doped zinc oxide transparent conducting films, Thin Solid Films, vol.280, pp.20-25, 1996.

V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira et al., Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature, Thin Solid Films, vol.427, pp.401-405, 2003.

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

V. Assunção, E. Fortunato, A. Marques, A. Gonçalves, I. Ferreira et al., New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering, Thin Solid Films, vol.442, pp.102-106, 2003.

E. Fortunato, V. Assunção, A. Gonçalves, A. Marques, H. Águas et al., High quality conductive gallium-doped zinc oxide films deposited at room temperature, Thin Solid Films, vol.451, pp.443-447, 2004.

S. C. Dixon, D. O. Scanlon, C. J. Carmalt, and I. P. Parkin, n-Type doped transparent conducting binary oxides: an overview, J. Mater. Chem. C, vol.4, pp.6946-6961, 2016.

T. Minami, New n-Type Transparent Conducting Oxides, MRS Bull, vol.25, pp.38-44, 2000.

M. Hiramatsu, K. Imaeda, N. Horio, and M. Nawata, Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation, J. Vac. Sci Technol A: Vacuum, Surfaces, and Films, vol.16, pp.669-673, 1998.

T. Minami, Transparent and conductive multicomponent oxide films prepared by magnetron sputtering, J. Vac. Sci Technol A: Vacuum, Surfaces, and Films, vol.17, pp.1765-1772, 1999.

T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films, vol.516, pp.5822-5828, 2008.

D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato et al., High mobility hydrogenated zinc oxide thin films, Sol. Ener. Mater. Sol. Cells, vol.163, pp.255-262, 2017.

A. Lyubchyk, A. Vicente, B. Soule, P. U. Alves, T. Mateus et al., Mapping the Electrical Properties of ZnO-Based Transparent Conductive Oxides Grown at Room Temperature and Improved by Controlled Postdeposition Annealing, Adv. Electron. Mater, vol.2, issue.1, p.1500287, 2016.

A. Lyubchyk, A. Vicente, P. U. Alves, B. Catela, B. Soule et al., Influence of post-deposition annealing on electrical and optical properties of ZnO-based TCOs deposited at room temperature, Phys. Status Solidi A, vol.213, pp.2317-2328, 2016.

K. Fleischer, E. Norton, D. Mullarkey, D. Caffrey, and I. V. Shvets, Quantifying the Performance of P-Type Transparent Conducting Oxides by, Experimental Methods, Materials, vol.10, p.1019, 2017.

M. Lagrange, D. P. Langley, G. Giusti, C. Jimenez, Y. Brechet et al., Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing, Nanoscale, vol.7, pp.17410-17423, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298391

C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, 1995.

R. J. Mortimer and D. R. Rosseinsky, Electrochromic Materials and Devices, 2015.

C. G. Granqvist and G. A. Niklasson, Thermochromic oxide-based thin films and nanoparticle composites for energy-efficient glazing, Buildings, vol.7, pp.3-4, 2017.

M. Li, S. Magdassi, Y. Gao, and Y. Long, Hydrothermal synthesis of VO 2 polymorphs: advantages, challenges and prospects of energy efficient smart windows, pp.1701147-1701148, 2017.

S. Li, G. A. Niklasson, and C. G. Granqvist, Thermochromic undoped and Mg-doped VO 2 thin films and nanoparticles: optical properties and performance limits for energy efficient windows, J. Appl. Phys, vol.115, 2014.

C. G. Granqvist, Electrochromics for smart windows: oxidebased thin films and devices, Thin Solid Films, vol.564, pp.1-38, 2014.

M. A. Arvizu, G. A. Niklasson, and C. G. Granqvist, Electrochromic W 1_x_y TixMo y O 3 thin films made by sputter deposition: large optical modulation, good cycling durability, and approximate color neutrality, Chem. Mater, vol.29, pp.2246-2253, 2017.

F. Lin, D. Nordlund, T. Weng, R. G. Moore, D. T. Gillaspie et al., Hole doping in Alcontaining nickel oxide materials to improve electrochromic performance, ACS Appl. Mater. Interfaces, vol.5, pp.301-309, 2013.

F. Lin, D. Nordlund, T. Weng, D. Sokaras, K. M. Jones et al., Origin of electrochromism in highperforming nanocomposite nickel oxide, vol.5, pp.3643-3649, 2013.

R. Wen, C. G. Granqvist, and G. A. Niklasson, Anodic electrochromism for energyefficient windows: cation/anionbased surface processes and effects of crystal facets in nickel oxide thin films, Adv. Funct. Mater, vol.25, pp.3359-3370, 2015.

E. L. Bayrak-pehlivan, S. Runnerstrom, G. A. Niklasson, D. J. Milliron, and C. G. Granqvist, A polymer electrolyte with high luminous transmittance and low solar throughput: polyethylene-lithium bis(trifluoromethylsulfonyl) imide with In2O 3 :Sn nanocrystals, Appl. Phys. Lett, vol.100, pp.241902-241903, 2012.

R. Wen, S. Malmgren, C. G. Granqvist, and G. A. Niklasson, Degradation dynamics for electrochromic WO 3 films under extended charge insertion/extraction: unveiling physicochemical mechanisms, ACS Appl. Mater. Interfaces, vol.9, pp.12872-12877, 2017.

R. Wen, C. G. Granqvist, and G. A. Niklasson, Anodic electrochromic nickel oxide thin films: decay of charge density upon extensive electrochemical cycling, ChemElectroChem, vol.3, pp.266-275, 2016.

R. Wen, C. G. Granqvist, and G. A. Niklasson, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO 3 films, Nat. Mater, vol.14, pp.996-1001, 2015.

H. Qu, D. Primetzhofer, M. A. Arvizu, Z. Qiu, U. Cindemir et al., Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films, ACS Appl. Mater. Interfaces, vol.9, pp.42420-42424, 2017.

C. G. Granqvist and G. A. , Bayrak Pehlivan, Niklasson, Electrochromics on a roll: webcoating and lamination for smart windows, Surf. Coat. Technol, vol.336, pp.133-138, 2018.

M. K. Dietrich, F. Kuhl, A. Polity, and P. J. Klar, Optimizing thermochromic VO 2 by codoping with W and Sr for smart window applications, Appl. Phys. Lett, vol.110, pp.141907-141908, 2017.

Y. Ji, S. Li, G. A. Niklasson, and C. G. Granqvist, Durability of thermochromic VO 2 thin films under heating and humidity: effect of Al oxide top coatings, Thin Solid Films, vol.562, pp.568-573, 2014.

A. Cannavale, P. Cossari, G. E. Eperon, S. Colella, F. Fiorito et al., Forthcoming perspectives on photoelectrochromic devices: a critical review, Energy Environ. Sci, vol.9, pp.2682-2719, 2016.

P. Yang, P. Sun, and W. Mai, Electrochromic energy storage devices, Mater. Today, vol.19, pp.394-402, 2016.

A. Llordés, G. Garcia, J. Gazquez, and D. J. Milliron, Tunable nearinfrared and visiblelight transmittance in nanocrystal-inglass composites, Nature, vol.500, pp.323-326, 2013.

D. D. Fong and S. Ramanathan, Preface for Special Topic: Ionotronics, APL Mater, vol.5, p.42201, 2017.

N. Pryds and V. Esposito, When two become one: An insight into 2D conductive oxide interfaces, J Electroceram, vol.38, pp.1-23, 2017.

S. Sanna, V. Esposito, J. W. Andreasen, J. Hjelm, W. Zhang et al., Enhancement of the chemical stability in confined d-Bi 2 O 3, Nat. Mater, vol.14, pp.500-504, 2015.

S. Sanna, V. Esposito, A. Tebano, S. Licoccia, E. Traversa et al., Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures, Small, vol.6, pp.1863-1867, 2010.

S. Sanna, V. Esposito, M. Christensen, and N. Pryds, High ionic conductivity in confined bismuth oxide-based heterostructures, APL Mater, vol.4, pp.1-5, 2016.

T. Kanki and H. Tanaka, Research Update: Nanoscale electrochemical transistors in correlated oxides, APL Mater, vol.5, pp.1-11, 2017.

A. Younis, D. W. Chu, and S. A. Li, Oxygen level: the dominant of resistive switching characteristics in cerium oxide thin films, J. Phys. D: Appl. Phys, vol.45, issue.35, pp.1-6, 2012.

A. T. Wong, J. H. Noh, P. R. Pudasaini, B. Wolf, N. Balke et al., Impact of gate geometry on ionic liquid gated ionotronic systems, APL Materials, vol.5, pp.1-7, 2017.

S. Chen, L. Shen, P. A. Van-aken, J. Maier, and Y. Yu, Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries, Adv. Mater, vol.29, pp.1-8, 2017.

J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems, Nat. Mater, vol.4, pp.806-815, 2005.

N. Sata, K. Eberl, K. Eberman, and J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures, Nature, vol.408, pp.946-949, 2000.

A. Evans, A. Bieberle-hütter, J. L. Rupp, and L. J. Gauckler, Review on microfabricated micro-solid oxide fuel cell membranes, vol.194, pp.119-129, 2009.

S. Lee, A. Sangle, P. Lu, A. Chen, W. Zhang et al., Novel Electroforming-Free Nanoscaffold Memristor with Very High Uniformity, Tunability, and Density, vol.26, pp.6284-6289, 2014.

S. Lee and J. L. Macmanus-driscoll, Research Update: Fast and tunable nanoionics in vertically aligned nanostructured films, vol.5, pp.1-16, 2017.

J. Njodzefon, C. R. Graves, M. B. Mogensen, A. Weber, and J. Hjelm, Kinetic Studies on State of the Art Solid Oxide Cells: A Comparison between Hydrogen/Steam and Reformate Fuels, J. Electrochem. Soc, vol.163, issue.13, pp.1451-1462, 2016.

J. An, Y. Kim, J. Park, T. M. Gür, and F. B. Prinz, Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm 2 at 450°C, Nano Lett, vol.13, pp.4551-4555, 2013.

J. D. Baek, C. Yu, and P. Su, A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability, Nano Lett, vol.16, pp.2413-2417, 2016.

C. D. Baertsch, K. F. Jensen, J. L. Hertz, H. L. Tuller, S. T. Vengallatore et al., Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell, Journal of Materials Research, vol.19, pp.2604-2615, 2004.

A. Bieberle-hütter, D. Beckel, U. P. Muecke, J. L. Rupp, and L. J. Infortuna, Gauckler, Micro-solid oxide fuel cells as battery replacement, vol.4, pp.12-15, 2005.

J. L. Hertz and H. L. Tuller, Electrochemical characterization of thin films for a microsolid oxide fuel cell, Journal of Electroceramics, vol.13, issue.1, pp.663-668, 2004.

H. Noh, K. J. Yoon, B. Kim, H. Je, H. Lee et al., Thermomechanical stability of multi-scalearchitectured thin-film-based solid oxide fuel cells assessed by thermal cycling tests, J. Power Sources, vol.249, pp.125-130, 2014.

M. Tsuchiya, B. Lai, and S. Ramanathan, Scalable nanostructured membranes for solid-oxide fuel cells, Nat. Nanotechnol, vol.6, pp.282-286, 2011.

K. Kerman, S. Xuza, and S. Ramanathan, Free standing yttriadoped zirconia membranes: Geometrical effects on stability, J. Electroceramics, vol.34, pp.91-99, 2015.

K. J. Kim, B. H. Park, S. J. Kim, Y. Lee, H. Bae et al., Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability, Scientific Reports, vol.6, issue.22443, pp.1-8, 2016.

J. D. Baek, K. Liu, and P. Su, A functional micro-solid oxide fuel cell with a 10 nmthick freestanding electrolyte, J. Mater. Chem. A, 2017.

S. Saxena, R. Sharma, and B. D. Pant, International Conference on Devices, Circuits and Communications (ICDCCom), 2014.

N. W. Hagood, R. Kindel, K. Ghandi, and P. Gaudenzi, Proc. Smart Mater. Struct, 1993.

Q. Q. Zhang, S. J. Gross, S. Tadigadapa, T. N. Jackson, F. T. Djuth et al., Sens. Actuators, A, vol.105, p.91, 2003.

E. Hong, , 2004.

P. Hareesh, I. Misri, S. Yang, and D. L. Devoe, J. Microelectromech. Syst, vol.21, p.1513, 2012.

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.

S. B. Kim, H. Park, S. H. Kim, H. C. Wikle, J. H. Park et al., J. Microelectromech. Syst, vol.22, p.26, 2013.

H. Cho, J. Park, and J. Y. Park, Micro Nano Syst. Lett, vol.5, p.20, 2017.

M. D. Nguyen, H. Yuan, E. P. Houwman, M. Dekkers, G. Koster et al., ACS Appl. Mater. Interfaces, vol.8, p.31120, 2016.

M. D. Nguyen, E. P. Houwman, M. Dekkers, and G. Rijnders, ACS Appl. Mater. Interfaces, vol.9, p.9849, 2017.

D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle et al., J. Micromech. Microeng, vol.18, p.55017, 2008.

C. T. Nguyen, M. D. Nguyen, M. Dekkers, E. Houwman, H. N. Vu et al., Thin Solid Films, vol.556, p.509, 2014.

Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, Sens. Actuators, A, vol.122, p.16, 2015.

S. G. Kim, S. Priya, I. Kanno, and . Bull, , vol.37, p.1039, 2012.

E. M. Fuentes-fernandez, B. E. Gnade, M. A. Quevedo-lopez, P. Shah, and H. N. Alshareef, J. Mater. Chem. A, vol.3, p.9837, 2015.

M. D. Nguyen, E. P. Houwman, H. Yuan, B. J. Wylie-van-eerd, M. Dekkers et al., ACS Appl. Mater. Interfaces, vol.9, p.35947, 2017.

M. D. Nguyen, E. P. Houwman, G. Koster, and G. , Rijnders, unpublished, 2018.

T. R. Shrout and S. J. Zhang, J. Electroceram, vol.19, p.113, 2007.

J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura et al., J. Eur. Ceram. Soc, vol.35, p.1659, 2015.

S. Garroni, N. Senes, A. Iacomini, S. Enzo, G. Mulas et al., Phys. Status Solidi A, 2018.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori et al., Nature, vol.432, p.84, 2004.

R. Zuo, J. Fu, and D. Lv, J. Am. Ceram. Soc, vol.92, p.283, 2009.

J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, J. Am. Ceram. Soc, vol.96, p.3677, 2013.

M. D. Nguyen, M. Dekkers, E. P. Houwman, H. T. Vu, H. N. Vu et al., Mater. Lett, vol.164, p.413, 2016.

I. Kanno, J. Phys. Conf. Ser, vol.660, p.12001, 2015.

S. S. Won, J. Lee, V. Venugopal, D. J. Kim, J. Lee et al., Appl. Phys. Lett, vol.108, p.232908, 2016.

H. H. Tippins, Phys. Rev, vol.140, p.316, 1965.

M. R. Lorentz, J. F. Woods, and R. J. Gambino, J. Phys. Chem. Solids, vol.28, p.403, 1967.

R. Roy, V. G. Hill, and E. F. Osborn, J. Am. Chem. Soc, vol.74, p.719, 1952.

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui et al., Jpn. J. Appl. Phys, vol.55, pp.1202-1204, 2016.

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi et al., Inorg. Chem, vol.55, p.12079, 2015.

Y. Oshima, E. G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, J. Appl. Phys, vol.118, p.85301, 2015.

H. Nishinaka, D. Tahara, and M. Yoshimoto, Jpn. J. Appl. Phys, vol.119, p.1202, 2016.

T. Oshima, Y. Kato, M. Oda, T. Hitora, and M. Kasu, Appl. Phys. Express, vol.10, p.51104, 2017.

M. Higashiwaki, H. Murakami, Y. Kumagai, and A. Kuramata, Jpn. J. Appl. Phys, vol.55, pp.1202-1203, 2016.

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara et al., Appl. Phys. Express, vol.8, p.15503, 2015.

N. T. Son, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi et al., J. Appl. Phys, vol.120, p.235703, 2016.

K. Sasaki, D. Wakimoto, Q. T. Thieu, Y. Koishikawa, A. Kuramata et al., IEEE Electron Device Lett, vol.38, p.783, 2017.

K. Sasaki, Q. T. Thieu, D. Wakimoto, A. Kuramata, and S. Yamakoshi, , p.12, 2017.

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Express, vol.10, p.8, 2017.

K. D. Chabak, A. Green, J. Mccandless, N. Moser, S. Tetlak et al., , p.27, 2017.

Z. Xia, S. Krishnamoorthy, C. Joishi, S. Bajaj, Y. Zhang et al., , p.10, 2017.

E. Ahmadi, O. S. Koksaldi, X. Zheng, T. Mates, Y. Oshima et al., , p.28, 2017.

A. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert et al., IEEE Elect. Device Lett, vol.38, p.790, 2017.

G. Jessen, , p.3, 2017.

K. Sasaki, Q. T. Thieu, D. Wakimoto, Y. Koishikawa, A. Kuramata et al., Appl. Phys. Express, vol.10, p.124201, 2017.

D. Shinohara and S. Fujita, Jpn. J. Appl. Phys, vol.47, p.7311, 2008.

K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, Jpn. J. Appl. Phys, vol.51, p.20201, 2012.

S. Fujita, M. Oda, K. Kaneko, and T. Hitora, Jpn. J. Appl. Phys, vol.55, pp.1202-1205, 2016.

M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki et al., Appl. Phys. Express, vol.9, p.21101, 2016.

K. Kaneko, S. Fujita, and T. Hitora, 6th Int. Symp. Organic and Inorganic Electronic Materials and Related Nanotechnologies, 20171-02-02.

K. Kaneko, S. Fujita, and T. Hitora, Jpn. J. Appl. Phys, vol.57, pp.2-2, 2018.

K. Kaneko, T. Hitora, S. Fujita, and . Electrochem, , p.1155, 2017.

R. Jinno, T. Uchida, K. Kaneko, and S. Fujita, Appl. Phys. Express, vol.9, p.71101, 2016.

K. Kaneko, M. Kitajima, and S. Fujita, MRS Advances, vol.2, p.301, 2017.

, Fuji Keiza Group press release on, 2017.

M. Coll, Applied Surface Science, vol.482, pp.1-93, 2019.