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Abstract—This paper presents how the most recent improve-
ments made on covariance matrix estimation and model order
selection can be applied to the portfolio optimisation problem.
The particular case of the Maximum Variety Portfolio is treated
but the same improvements apply also in the other optimisation
problems such as the Minimum Variance Portfolio. We assume
that the most important information (or the latent factors) are
embedded in correlated Elliptical Symmetric noise extending
classical Gaussian assumptions. We propose here to focus on
a recent method of model order selection allowing to efficiently
estimate the subspace of main factors describing the market. This
non-standard model order selection problem is solved through
Random Matrix Theory and robust covariance matrix estimation.
The proposed procedure will be explained through synthetic data
and be applied and compared with standard techniques on real
market data showing promising improvements.

Index Terms—Robust Covariance Matrix Estimation, Model
Order Selection, Random Matrix Theory, Portfolio Optimisation,
Financial Time Series, Multi-Factor Model, Elliptical Symmetric
Noise, Maximum Variety Portfolio.

I. INTRODUCTION

Portfolio allocation is often associated with the mean-
variance framework fathered by Markowitz in the 50’s
[1]. This framework designs the allocation process as an
optimisation problem where the portfolio weights are such
that the expected return of the portfolio is maximised for
a given level of portfolio risk. In practice this needs to
estimate both expected returns and covariance matrix leading
to estimation errors, particularly important for expected
returns. This partly explains why many studies concentrate on
allocation process relying solely on the covariance estimation
such as the Global Minimum Variance Portfolio or the
Equally Risk Contribution Portfolio [2], [3]. Another way
to reduce the overall risk of a portfolio is to diversify the
risks of its assets and to look for the assets weights that
maximise a diversification indicator such as the variety (or
diversification) ratio [4], [5], only involving the covariance
matrix of the assets returns as well.

The frequently used covariance estimator is the Sample
Covariance Matrix (SCM), optimal under the Normal
assumption. Financial time series of returns might exhibit

outliers related to abnormal returns leading to estimation
errors larger than expected. The field of robust estimation
[6], [7] intends to deal with this problem especially when
N , the number of samples, is larger than m, the size of the
observations vector. When N < m, the covariance matrix
estimate is not invertible and regularization approaches are
required. Some authors have proposed hybrid robust shrinkage
covariance matrix estimates [8], [9], [10], building estimators
upon Tyler’s robust M-estimator [6] and Ledoit-Wolf’s
shrinkage approach [11].

Recent works [8], [12], [9], [13] based on Random Matrix
Theory (RMT) have therefore considered robust estimation
in the m, N regime. In [13], the Global Minimum Variance
Portfolio is studied and the authors show that applying an
adapted estimation methodology based on the Shrinkage-
Tyler M-estimator leads to achieving superior performance
over may other competing methods. Another way to mitigate
covariance matrix estimation errors is to filter the noisy part of
the data. In financial applications, several empirical evidence
militate in favour of the existence of multiple sources of
risks challenging the CAPM single market factor assumption
[14]. Whereas statistical methods like the principal component
analysis may fail in distinguishing informative factors from
the noisy ones, RMT helps in finding a solution for filtering
noise [15], [16], [17], [18], even though the single market
factor still prevails in the described cleaning method that is
not completely satisfactory.

The application here proposes to mix several approaches:
the assets returns are modelled as a multi-factor model embed-
ded in correlated elliptical and symmetric noise and the final
covariance estimate will be computed on the ”signal only” part
of the observations, separable from the ”noise part” thanks to
the results found in [19], [20], [21], [22].

The article is constructed as follows: section II presents the
classical model and assumptions under consideration. Section
III introduces the selected method of portfolio allocation for
this paper: the Maximum Variety portfolio. Section IV explains
how to solve the problem jointly with RMT and robust



estimation theory which allow to design a consistent estimate
of the number K of informative factors. Section V shows some
results obtained on experimental financial data highlighting
the efficiency of the proposed method with regards to the
conventional ones. Conclusion in section VI closes this paper.

Notations: Matrices are in bold and capital, vectors in bold.
Tr(X) is the trace of the matrix X. ‖X‖ stands for the spectral
norm. For any matrix A, AT is the transpose of A. For any
m−vector x, L : x 7→ L(x) is the m×m matrix defined as the
Toeplitz operator:

([L(x)]i, j ) i≤ j = xi−j and
([L(x)]i, j ) i> j =

x∗i−j . For any matrix A of size m × m, T(A) represents the
matrix L(ǎ) where ǎ is a vector for which each component
ǎi, 0<i<m−1 contains the sum of the i−th diagonal of A divided
by m.

II. MODEL AND ASSUMPTIONS

Suppose that our investment universe is composed of m
assets characterized at each time t by their returns. Let’s denote
by R = [r1, · · · , rN ] the m × N-matrix containing N obser-
vations (or return m-vectors) {rt }t∈[1,N ] at date t. We assume
next that the returns of the m assets can conjointly be expressed
as a multi-factor model where an unknown number K < m of
factors may be characteristic of this universe (i.e. among the
m assets, there exists K principal factors that are driving the
universe comprising these particular m assets). We assume the
additive noise to be a multivariate Elliptical Symmetric noise
[23], [24] generalizing a correlated multivariate non-Gaussian
noise. We then have, for all t ∈ [1, N]: rt = Bt ft +

√
τt C1/2 xt

where
• rt is the m-vector of returns at time t,
• Bt is the m × K-matrix of coefficients that define the

sensitivity of the assets to each of the factor at time t,
• ft is the K-vector of factor values at t, supposed to be

common to all the assets,
• xt is a zero-mean unitarily invariant random m-vector of

norm | |xt | |2 = 1,
• C is called the m × m scatter matrix (equal to the

covariance matrix up to a constant) and is supposed to
be Toeplitz structured and time invariant over the period
of observation,

• τt is a real positive random variable at t representing the
variance of the noise. This quantity is different along the
time t and can efficiently pilot the non-Gaussian nature
of the noise.

The efficient estimation of the number of factors K is really
a challenging problem for many financial applications:
• identifiability of the main K factors to build new portfo-

lios. This problem is for example closely related to linear
unmixing problem in Hyperspectral Imaging [25],

• identifiability of the main K factors to separate signal
and noise subspaces in order to build projectors, to filter
noisy part of the data through jointly robust and efficient
covariance matrix estimation. This is for example useful
for portfolio allocation or in risk management [26], [27],
[28], [29].

The identified theoretical problem to solve is clearly the
model order selection estimation as well as efficient method
of covariance matrix estimation under correlated non-Gaussian
noise hypothesis.

III. MAXIMUM VARIETY PORTFOLIO

Portfolio allocation is a widely studied problem. Depending
on the investment objective, the portfolio allocation differs.
Apart from the well-known methods resides the differentiating
Maximum Variety process that aims at maximising the Variety
Ratio of the final portfolio. One way to quantify the degree
of diversification of a portfolio invested in m assets with
proportions w = [w1, . . . ,wm]T is to compute the Variety Ratio
of the portfolio:

V R(w,Σ) = wT s(
wT Σw

)1/2 , (1)

where w is the m-vector of weights, wi representing the
allocation in asset i, Σ is the m × m covariance matrix of
the m assets returns and where s is the m-vector of the square
roots of the diagonal element of Σ, ie si =

√
Σii , representing

the standard deviation of the returns of the m assets. One way
to allocate among the assets would be to maximise the above
diversification ratio with respect to the weight vector w to
obtain the solution w∗vr , also called the Maximum Diversified
Portfolio in [4]:

w∗vr = argmin
w

V R(w,Σ) , (2)

under some conditions and constraints on the individual values
of w. In the following, we will impose only 0 ≤ wi ≤ 1

∀i ∈ [1,m] and
m∑
i=1

wi = 1. As the objective function in

(2) depends on the unknown covariance matrix Σ, this latter
has to be estimated in order to get the portfolio composition.
This problem is one of the challenging problems in portfolio
allocation and several methods can apply. The optimisation
problem is shown to be very sensitive to outliers and to the
chosen method of covariance matrix estimation. One of the
main technique consists first in building a de-noised covariance
matrix by thresholding the lowest eigenvalues and then in
solving the objective function. The open questions always
remain the choice of the covariance matrix estimate as well
as the choice of the threshold value. To overcome these
drawbacks and to answer these two questions, we propose a
robust and quite simple technique based both on the class of
the robust M-estimators and the RMT.

IV. PROPOSED METHODOLOGY

Under general non-Gaussian noise hypothesis proposed in
Section II, Tyler M-estimator [6], [30] is shown to be the
most robust covariance matrix estimate. Given N observations
of the m-vector rt , the Tyler-M estimate Ĉtyl is defined as the
solution of the following ”fixed-point” equation:

C =
m
N

N∑
t=1

rt rTt
rTt C−1 rt

, (3)
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Fig. 1. Eigenvalue distributions. Left: SCM of observations. Middle: Tyler covariance matrix of observations. Right: Tyler covariance matrix of observations
after whitening process. K-distributed case with shape parameter ν = 0.5, ρ = 0.8, m = 100, N = 1000 (c = 0.1), K = 3, log(λ̄) = log(1.7325).

with Tr(Ĉtyl) = m. The scatter matrix, solution of (3) has
some remarquable properties [31], [32] like being robust and
”variance”-free and really reflects the true structure of the
underlying process without power pollution. When the sources
are present in the observations {rt }, the use of this estimator
may lead to whiten the observations and to destroy the main
information concentrated in the K factors.

When the noise is assumed white distributed, several meth-
ods, based on the RMT have been proposed [33] to extract
information of interest from the received signals. One can
cite for instance the number of embedded sources estimation
[34], the problem of radar detection [35], signal subspace
estimation [36]. However, when the additive noise is corre-
lated, some RMT methods require the estimation of a specific
threshold which has no explicit expression and can be very
difficult to obtain [19], [37] while the others assume that the
covariance matrix is known and use it, through some source-
free secondary data, to whiten the signal. According to the
following consistency theorem found and proved in [20], [21],
[22], recent works have proposed to solve the problem through
a biased Toeplitz estimate of Ĉtyl , let’s say C̃tyl = T

(
Ĉtyl

)
:

Consistency theorem. Under the RMT regime assumption, ie
that N,m→∞, and the ratio c = m/N → c > 0, we have the
following spectral convergence:T (

Ĉtyl

)
− C

 a.s.−→ 0. (4)

This powerful theorem says that it is possible to estimate
the covariance matrix of the correlated noise even if the
observations contain the sources or information to be retrieved.
According to this result, the first step is then to whiten
the observations using C̃tyl . The whitened observations are
defined as rw,t = C̃−1/2

tyl
rt .

Given the set of N whitened observations
{
rw,t

}
and given

the Tyler’s covariance matrix Σ̂w of these whitened returns,
recent work [22] has shown that this whitening process allows
us to consider that the eigenvalues distribution of Σw has
to fit the predicted bounded distribution of Marčenko-Pastur
[38] except for a finite number of eigenvalues if any source

is still present and powerful enough to be detected outside
the upper bound of the Marčenko-Pastur distribution given by
λ̄ =

(
1 +
√

c
)2.

Figure 1 compares the eigenvalues distribution of the SCM
Ĉscm = R RT /N , Ĉtyl and Σ̂w for K = 3 sources of in-
formation embedded in non-Gaussian correlated K-distributed
noise. If no whitening operation is made before applying the
Marčenko-Pastur boundary properties of the eigenvalues, then
there is no chance to detect any of the sources. After whitening
process, the only detected sources above the Marčenko-Pastur
threshold correspond to the K sources. As a matter of fact,
there is no need anymore to adapt the value of the threshold
value regarding the distribution of τt and the estimated value
of IE[τ] [22]. The robust Tyler M-estimator is ”τ-free”, i.e. it
does not depend anymore of the distribution of τt . Once the
K largest eigenvalues larger than λ̄ are detected, we set the
m − K lowest ones to

(
Tr

(
Σ̂w

)
−∑m

k=K+1 λk

)
/(m − K), and

then build back the de-noised covariance matrix to be used in
(2) (or in any other objective function).

V. APPLICATION

This section is devoted to show the improvement of such
a process when applied to the Maximum Variety Portfolio
process. This allocation process (denoted as ”Variety Max”
in the following) is the one designed and used by Fideas
Capital for allocating their portfolios. The investment universe
consists of m = 40 baskets of European equity stocks rep-
resenting twenty-one industry subsectors (e.g. transportation,
materials, media...), thirteen countries (e.g. Sweden, France,
Netherlands,...) and six factor-based indices (e.g. momentum,
quality, growth, ...). Using baskets instead of single stocks
allows to reduce the idiosyncratic risks and the number of
assets to be considered. We observe the prices of these assets
on a daily basis from June 2000, the 19th to January 2018
the 29th. The daily prices are close prices, i.e. the price being
fixed before the financial marketplaces close at the end of each
weekday. The portfolios weights are computed as follows:
every four weeks, we estimate the covariance matrix of the
assets using the past one year of returns and we run the



optimisation procedure in order to get the vector of weights
that maximises the variety ratio (1) given this past period. The
computed weights, say at time t, are then kept fixed for the
next four weeks period. We compare the results obtained with
the proposed methodology with the ones obtained using the
SCM and we report several numbers in order to compare the
benefits of such a method. Performance are also compared
to the STOXX R© Europe 600 Index [39] performance that is
composed of 600 large, mid and small equity stocks across
17 countries of the European regions. On the left of Figure 2,
we report the evolution of portfolios wealths, starting at 100 at
the beginning of the first period. The Variety Max ”SCM” and
”RMT Tyler whitened” portfolios are respectively in blue and
green and the price of the benchmark is the black line. The
proposed RMT Tyler whitened technique clearly outperforms
conventional ones. On the right of this figure, the cumulative
turnover is shown for the both portfolios. We assume that the
turnover (or the change in weights) between two consecutive
periods t and t + 1 is measured by

∑m
i=1 |wi,t+1 − wi,t |. Again,

the proposed technique leads to lower the cumulated turnover
which is important in finance. Limiting the turnover is often
added as an additional non linear constraint to the optimization
process (2).

Figure 3 shows two different results. The two graphs on
the left represent the evolution of the weights, on the overall
period. Each colour represents an asset and the weights are
stacked at each time (with the sum equals to one). The
evolution of the weights for the Variety Max ”RMT Tyler
whitened” portfolio is smoother than for the SCM. This is
confirmed by a lower turnover too, so that the allocation
process is more stable when using the proposed methodology.
On the right of the same figure, we report the values of
the selected eigenvalues (on the left axis) and its number as
well (on the right axis). Most of the time, five eigenvalues
are detected. This results show a different picture than the
general one where only one source (the ”market”) is outside
the Marčenko-Pastur bound. As noticed before, we get the
same improvements as with other allocation process such as
the Global Minimum Variance Portfolio. We finally report on

TABLE I
SOME PERFORMANCE NUMBERS.

Variety Max Ann. Ann. Ratio Max
Portfolios Return Volatility (Ret / Vol) DD

RMT Tyler Whithened 9,71% 12,9% 0,75 50,41%
SCM 8,51% 13,80% 0,62 55,02%

Benchmark 4,92% 15,19% 0,32 58,36%

table I some statistics on the overall portfolio performance:
we compare, for the whole period, the annualised return, the
annualised volatility, the ratio between the return and the
volatility and the maximum drawdown of the portfolios and
the benchmark. All the qualitative indicators related to the
proposed technique show a significant improvement.

VI. CONCLUSION

In this paper we have shown that when processed correctly
the Maximum Variety Portfolio allocation process leads to im-

proved performance with respect to a classical approach. The
improvement comes especially from the robust and denoised
version of the covariance matrix estimate. Indeed, we have
modelled the assets returns as a multi-factor model embedded
in a correlated elliptical and symmetric noise, allowing to
account for non-Gaussian and non correlated noise. Given this
model setup, then we show how to separate the signal from
the noise subspace using a ”toeplitzified” robust and consistent
Tyler-M estimator and the Random Matrix theory applied on
the whitened covariance matrix estimate. This paper has taken
the Maximum Variety Portfolio process as an example but the
same results apply on other allocation framework involving
covariance matrix estimation (and/or model order selection),
such as the Global Minimum Variance Portfolio. Moreover
this can also be exploited to define the main directions of
information and to construct pure factor driven models. These
methods have also shown their importance in the radar and
hyperspectral fields and are very promising techniques for
many applications.

ACKNOWLEDGMENTS

We would like to thank DGA and Fideas Capital for
supporting this research and providing the data. We thank
particularly Thibault Soler, and also Pierre Filippi and Alexis
Merville for their constant interaction with the research team
at Fideas Capital.

REFERENCES

[1] H. M. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, no. 1,
pp. 77–91, 1952.

[2] R. Clarke, H. D. Silva, and S. Thorley, “Minimum variance, maximum
diversification, and risk parity: an analytic perspective,” Journal of
Portfolio Management, June 2012.

[3] S. Maillard, T. Roncalli, and J. Teiletche, “The properties of equally
weighted risk contributions portfolios,” Journal of Portfolio Manage-
ment, vol. 36, pp. 60–70, 2010.

[4] Y. Choueifaty and Y. Coignard, “Toward maximum diversification,”
Journal of Portfolio Management, vol. 35, no. 1, pp. 40–51, 2008.

[5] Y. Choueifaty, T. Froidure, and J. Reynier, “Properties of the most
diversified portfolio,” Journal of investment strategies, vol. 2, no. 2, pp.
49–70, 2013.

[6] D. E. Tyler, “A distribution-free M-estimator of multivariate scatter,”
The annals of Statistics, vol. 15, no. 1, pp. 234–251, 1987.

[7] R. A. Maronna, “Robust M-estimators of multivariate location and
scatter,” Annals of Statistics, vol. 4, no. 1, pp. 51–67, January 1976.

[8] Y. Chen, A. Wiesel, and A. O. Hero, “Robust shrinkage estimation of
high-dimensional covariance matrices,” IEEE Transactions on Signal
Processing, vol. 59, no. 9, September 2011.

[9] F. Pascal, Y. Chitour, and Y. Quek, “Generalized robust shrinkage
estimator and its application to STAP detection problem,” IEEE Trans-
actions on Signal Processing, vol. 62, no. 21, November 2014.

[10] Y. Abramovich and N. K. Spencer, “Diagonally loaded normalised
sample matrix inversion (LNSMI) for outlier-resistant adaptive filtering,”
in IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 3,
April 2007.

[11] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-
dimensional covariance matrices,” Journal of Multivariate Analysis,
vol. 88, pp. 365–411, 2004.

[12] R. Couillet, F. Pascal, and J. W. Silverstein, “Robust estimates of
covariance matrices in the large dimensional regime,” IEEE Transactions
on Information Theory, vol. 60, no. 11, September 2014.

[13] L. Yang, R. Couillet, and M. R. McKay, “A robust statistics approach to
minimum variance portfolio optimization,” IEEE Transactions on Signal
Processing, vol. 63, no. 24, pp. 6684–6697, Aug 2015.

[14] W. F. Sharpe, “Capital asset prices: A theory of market equilibrium
under conditions of risk,” Journal of Finance, vol. 19, no. 3, pp. 425–
442, 1964.



Jan01 Jan02 Jan03 Jan04 Jan05 Jan06 Jan07 Jan08 Jan09 Jan10 Jan11 Jan12 Jan13 Jan14 Jan15 Jan16 Jan17 Jan18 Jan19

·105

100

200

300

400

500

Max Variety - SCM
Max Variety - RMT Tyler whitened
Benchmark

Fig. 2. All portfolios (MaxVariety) From Replicated Single Strategies

[28] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[29] F. Pascal, Y. Chitour, J. P. Ovarlez, P. Forster, and P. Larzabal, “Co-
variance structure maximum-likelihood estimates in compound Gaussian
noise: Existence and algorithm analysis,” IEEE Transactions on Signal
Processing, vol. 56, no. 1, pp. 34–48, Jan 2008.

[30] F. Pascal, P. Forster, J. P. Ovarlez, and P. Larzabal, “Performance analysis
of covariance matrix estimates in impulsive noise,” IEEE Transactions
on Signal Processing, vol. 56, no. 6, pp. 2206–2217, June 2008.

[31] M. Mahot, F. Pascal, P. Forster, and J. P. Ovarlez, “Asymptotic properties
of robust complex covariance matrix estimates,” IEEE Transactions on
Signal Processing, vol. 61, no. 13, pp. 3348–3356, July 2013.

[32] R. Couillet and M. Debbah, Random matrix methods for wireless
communications. Cambridge University Press, 2011.

[33] S. Kritchman and B. Nadler, “Non-parametric detection of the number
of signals: Hypothesis testing and random matrix theory,” IEEE Trans-
actions on Signal Processing, vol. 57, no. 10, pp. 3930–3941, Oct 2009.

[34] R. Couillet, M. S. Greco, J. P. Ovarlez, and F. Pascal, “RMT for
whitening space correlation and applications to radar detection,” in 2015
IEEE 6th International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), Dec 2015, pp. 149–152.

[35] W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet, “A subspace
estimator for fixed rank perturbations of large random matrices,” Journal
of Multivariate Analysis, vol. 114, pp. 427–447, 2013.

[36] R. Couillet, “Robust spiked random matrices and a robust G-MUSIC
estimator,” Journal of Multivariate Analysis, vol. 140, pp. 139 – 161,
2015.

May01 Feb04 Nov06 Aug09 May12 Feb15 Nov17 Jul20
0

5

10

15

20

25

30

35

40

45

50
Cumulated turnover for SCM and RMT Tyler whitened

SCM
RMT Tyler whitened

Fig. 2. Left: portfolios wealth starting at 100 at the first period. Right: cumulative sum of absolute weight changes (turnover) between the consecutive periods.

Selected EigenValues - RMT FP W

May01 Feb04 Nov06 Aug09 May12 Feb15 Nov17
0

10

20

30

40

0

1

2

3

4

5

6

7

8

9

10

Fig. 3. Left and middle: dynamic weights as a stacked area chart. Each colour represents an asset. The Variety Max ”RMT Tyler whitened” weights change
smoother than the ones obtained with SCM, confirmed also by a smaller cumulative turnover. Right: values of the selected eigenvalues (left axis) and their
number (right axis). .

[15] L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, “Noise dressing
of financial correlation matrices,” Physycal Review Letters, vol. 83, no.
1468, 1999.

[16] L. Laloux, P. Cizeau, M. Potters, and J.-P. Bouchaud, “Random Matrix
Theory and financial correlations,” International Journal of Theoretical
and Applied Finance, vol. 3, no. 03, pp. 391–397, 2000.

[17] M. Potters, J. P. Bouchaud, and L. Laloux, “Financial applications
of Random Matrix Theory: old laces and new pieces,” Acta Physica
Polonica B, vol. 36, no. 9, 2005.

[18] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E.
Stanley, “Collective behavior of stock price movements: A Random
Matrix Theory approach,” Physica A, vol. 299, pp. 175–180, 2001.

[19] J. Vinogradova, R. Couillet, and W. Hachem, “Statistical inference in
large antenna arrays under unknown noise pattern,” IEEE Transactions
on Signal Processing, vol. 61, no. 22, pp. 5633–5645, Nov 2013.

[20] E. Terreaux, J. P. Ovarlez, and F. Pascal, “Robust model order selection
in large dimensional Elliptically Symmetric noise,” arXiv preprint,
https://arxiv.org/abs/1710.06735, 2017.

[21] ——, “New model order selection in large dimension regime for Com-
plex Elliptically Symmetric noise,” in 25th European Signal Processing
Conference (EUSIPCO), Aug 2017, pp. 1090–1094.

[22] ——, “A Toeplitz-Tyler estimation of the model order in large dimen-
sional regime,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Apr 2018.

[23] D. Kelker, “Distribution theory of spherical distributions and a location-
scale parameter generalization,” Sankhyā: The Indian Journal of Statis-
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