, COST Action TD1301 MiMed


N. Joachimowicz, C. Conessa, T. Henriksson, and B. Duchêne, Breast phantoms for microwave imaging, IEEE Antennas Wireless Propag. Lett, vol.13, pp.1333-1336, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103476

I. S. Fenni;-z, ;. Haddad, and . Roussel,

K. Kuo and ;. Mittra, A Computationally Efficient 3-D Full-Wave Model for Coherent EM Scattering from Complex-Geometry Hydrometeors Based on MoM/CBFM-Enhanced Algorithm, IEEE Transactions on Geoscience and Remote Sensing, vol.56, pp.2674-2688, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01799775

M. S. Tasic and B. M. Kolundzija, Efficient Analysis of Large Scatterers by Physical Optics Driven Method of Moments, IEEE Trans. Ant. Prop, vol.59, issue.8, pp.2905-2915, 2011.

D. O'loughlin, M. J. O'halloran, B. M. Moloney, M. Glavin, E. Jones et al., Microwave Breast Imaging: Clinical Advances and Remaining Challenges, IEEE Trans. Biomed. Eng, vol.65, 2018.

L. Gharsalli, H. Ayasso, B. Duchêne, and A. Mohammad-djafari, Variational Bayesian Inversion for microwave breast imaging, Computer Assisted Methods in Engineering and Sciences, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211734

N. Joachimowicz, C. Pichot, and J. Hugonin, Inverse Scattering: An Iterative Numerical Method for Electromagnetic Imaging, IEEE Trans. Antennas Propagat, vol.39, pp.1742-1752, 1991.
URL : https://hal.archives-ouvertes.fr/hal-01384775

R. Scapaticci, L. D. Donato, I. Catapano, and L. Crocco, A feasibility study on microwave imaging for brain stroke monitoring, Progress in Electromagnetics Research B 2012, vol.40, pp.305-324

. Mj-donahue, . Achten, . Cogswell, . Fe-de-leeuw, . Cp-derdeyn et al., Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease, J Cereb Blood Flow Metab, vol.38, issue.9, pp.1391-1417, 2017.

D. Galanaud, Assessment of white matter injury and outcome in severe brain trauma : a prospective multicenter cohort, Anesthesiology, vol.117, issue.6, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00817567

N. Joachimowicz, B. Duchêne, C. Conessa, and O. Meyer, Easytoproduce adjustable realistic breast phantoms for microwave imaging, Proc. 10th EuCAP, pp.2892-2895, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01459682

N. Joachimowicz, B. Duchêne, J. A. Vasquez, G. Turvani, G. Dassano et al., Head phantoms for a microwave imaging system dedicated to cerebrovascular disease monitoring, Proceedings of the IEEE International Conference on Antenna Measurements and Applications Västerås, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01872730

D. Andreuccetti, R. Fossi, and C. Petrucci, An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz -100 GHz, IFAC-CNR, 1997.

A. Stogryn, Equations for calculating the dielectric constant of saline water, IEEE Trans. Microw. Theory Techn, vol.19, pp.733-736, 1971.

N. Joachimowicz, B. Duchêne, C. Conessa, and O. Meyer, Electromagnetic Technologies for Medical Diagnostics : Fundamental Issues, Clinical Applications and Perspective, Diagnostics, vol.8, issue.4, p.85, 2018.

E. Walter, Numerical Methods and Optimization: A consumer Guide, vol.ISBN, pp.978-981, 2014.

M. Lazebnik, M. Okoniewski, J. H. Booske, and S. C. Hagness, Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies, IEEE Microwave Wireless Comp. Lett, vol.17, pp.822-824, 2007.

G. R. Raju, Dielectric constant of binary mixtures of liquids, Proc. Conf. Elect. Insul. Dielect. Phenom, pp.357-363, 1988.

N. Joachimowicz, B. Duchêne, C. Conessa, and O. Meyer, Reference phantoms for microwave imaging, Proc. 11th EuCAP, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01587661

M. Burfeindt, T. J. Colgan, R. O. Mays, J. D. Shea, N. Behdad et al., MRI-derived 3-D-printed breast phantom for microwave breast imaging validation, IEEE Antennas Wireless Propag. Lett, vol.11, pp.1610-1613, 2012.

N. Graedel, J. R. Polimeni, B. Guerin, B. Gagoski, and L. L. Wald, An anatomically realistic temperature phantom for radiofrequency heating measurements, Magn. Reson. Med, vol.73, pp.442-450, 2015.