, The study was also granted access to the HPC resources of CINES under the allocations 2016-020164 and 2017-A0022B10159 made by GENCI

P. J. Coelho, Detailed numerical simulation of radiative transfer in a nonluminous turbulent jet diffusion flame, Combust. Flame, vol.136, issue.4, pp.481-492, 2004.

P. J. Coelho, Numerical simulation of the interaction between turbulence and radiation in reactive flows, Prog. Energy Combust. Sci, vol.33, issue.4, pp.311-383, 2007.

A. Wang, M. F. Modest, D. C. Haworth, and L. Wang, Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames, J. Quant. Spectrosc. Radiat. Transf, vol.109, issue.2, pp.269-279, 2008.

T. Ren, M. F. Modest, and D. C. Haworth, Simulating turbulence-radiation interactions using a presumed probability density function method, Int. J. Heat Mass Transfer, vol.121, pp.911-923, 2018.

D. Poitou, J. Amaya, M. E. Hafi, and B. Cuénot, Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations, Combustion and Flame, vol.159, issue.4, pp.1605-1618, 2012.

A. Gupta, D. C. Haworth, and M. F. Modest, Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames, Proc. Combust. Inst, vol.34, issue.1, pp.1281-1288, 2013.

C. Koren, R. Vicquelin, and O. Gicquel, Multiphysics simulation combining large-eddy simulation, wall heat conduction and radiative energy transfer to predict wall temperature induced by a confined premixed swirling flame, Flow Turbul. Combust, vol.101, issue.1, pp.77-102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744260

L. Tessé, F. Dupoirieux, and J. Taine, Monte Carlo modeling of radiative transfer in a turbulent sooty flame, Int. J. Heat Mass Transfer, vol.47, issue.3, pp.555-572, 2004.

L. Wang, M. F. Modest, D. C. Haworth, and S. R. Turns, Modelling nongrey gas-phase and soot radiation in luminous turbulent nonpremixed jet flames, Combust. Theor. Model, vol.9, issue.3, pp.479-498, 2005.

G. Pal, A. Gupta, M. F. Modest, and D. C. Haworth, Comparison of accuracy and computational expense of radiation models in simulation of nonpremixed turbulent jet flames, p.8, 2011.

, Thermal Engineering Joint Conference, pp.1-10, 2011.

R. S. Mehta, D. C. Haworth, and M. F. Modest, Composition pdf/photon monte carlo modeling of moderately sooting turbulent jet flames, Combust. Flame, vol.157, issue.5, pp.982-994, 2010.

J. L. Consalvi and F. Nmira, Transported scalar pdf modeling of oxygenenriched turbulent jet diffusion flames: Soot production and radiative heat transfer, Fuel, vol.178, pp.37-48, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01459215

J. L. Consalvi and F. Nmira, Absorption turbulence-radiation interactions in sooting turbulent jet flames, J. Quant. Spectrosc. Radiat. Transf, vol.201, pp.1-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01990484

G. Lecocq, D. Poitou, I. Hernández, F. Duchaine, E. Riber et al., A methodology for soot prediction including thermal radiation in complex industrial burners, Flow Turbul. Combust, vol.92, issue.4, pp.947-970, 2014.

L. Palluotto, N. Dumont, P. Rodrigues, C. Koren, R. Vicquelin et al., Comparison of Monte Carlo methods efficiency to solve radiative energy transfer in high fidelity unsteady 3d simulations, Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, pp.1-10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01781014

L. Tessé, F. Dupoirieux, B. Zamuner, and J. Taine, Radiative transfer in real gases using reciprocal and forward Monte Carlo methods and a correlated-k approach, Int. J. Heat Mass Transfer, vol.45, issue.13, pp.2797-2814, 2002.

P. Rodrigues, B. Franzelli, R. Vicquelin, O. Gicquel, and N. Darabiha, Unsteady dynamics of PAH and soot particles in laminar counterflow diffusion flames, Proc. Combust. Inst, vol.36, issue.1, pp.927-934, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480263

P. Rodrigues, B. Franzelli, R. Vicquelin, O. Gicquel, and N. Darabiha, Coupling an LES approach and a soot sectional model for the study of sooting turbulent non-premixed flames, Combust. Flame, vol.190, pp.477-499, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01718624

, ISF3, international sooting flame (ISF) workshop website

S. P. Kearney, D. R. Guildenbecher, C. Winters, P. A. Farias, and T. W. ,

J. C. Grasser and . Hewson, Temperature, oxygen, and soot-volume-fraction measurements in a turbulent C 2 H 4 -fueled jet flame, pp.1-28, 2015.

C. D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech, vol.504, pp.73-97, 2004.

M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids, vol.20, issue.5, pp.1-20, 2008.

Y. Wang, A. Raj, and S. H. Chung, A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames, Combust. Flame, vol.160, issue.9, pp.1667-1676, 2013.

M. E. Mueller and H. Pitsch, LES model for sooting turbulent nonpremixed flames, vol.159, pp.2166-2180, 2012.

M. E. Mueller and H. Pitsch, Large eddy simulation subfilter modeling of sootturbulence interactions, Phys. Fluids, vol.23, issue.11, pp.1-20, 2011.

P. Rivière and A. Soufiani, Updated band model parameters for H 2 O, CO 2 , CH 4 and co radiation at high temperature, Int. J. Heat Mass Transfer, vol.55, pp.3349-3358, 2012.

R. Goody and Y. Yung, Atmospheric Radiation: Theoretical Basis, 1995.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache et al., HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf, vol.111, issue.15, pp.2139-2150, 2010.

S. A. Tashkun and V. I. Perevalov, CDSD-4000: High-resolution, hightemperature carbon dioxide spectroscopic databank, J. Quant. Spectrosc. Radiat. Transf, vol.112, issue.9, pp.1403-1410, 2011.

M. F. Modest, Radiative Heat Transfer, 2013.

K. C. Smyth and C. R. Shaddix, The elusive history of m= 1.57 -0.56i for the refractive index of soot, Combust. Flame, vol.107, issue.3, pp.314-320, 1996.

Y. F. Zhang, O. Gicquel, and J. Taine, Optimized emission-based reciprocity

, Monte Carlo method to speed up computation in complex systems, Int. J. Heat Mass Transfer, vol.55, pp.8172-8177, 2012.

T. Schonfeld and M. Rudgyard, Steady and unsteady flow simulations using the hybrid flow solver AVBP, AIAA Journal, vol.37, issue.11, pp.1378-1385, 1999.

O. Colin and M. Rudgyard, Development of high-order taylor-galerkin schemes for LES, J. Comput. Phys, vol.162, issue.2, pp.338-371, 2000.

T. J. Poinsot and S. K. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys, vol.101, issue.1, pp.104-129, 1992.

R. Vicquelin, B. Fiorina, S. Payet, N. Darabiha, and O. Gicquel, Couplingn tabulated chemistry with compressible CFD solvers, Proc. Combust. Inst, vol.33, issue.1, pp.1481-1488, 2011.

C. Lemieux, M. Carlo, and Q. Sampling, Springer Series in Statistics, 2009.

S. Joe and F. Y. Kuo, Constructing sobol sequences with better twodimensional projections, SIAM J. Sci. Comput, vol.30, issue.5, pp.2635-2654, 2008.

S. Buis, A. Piacentini, and D. Déclat, PALM: a computational framework for assembling high-performance computing applications

E. , , vol.18, pp.231-245, 2006.

Y. Xuan and G. Blanquart, Effects of aromatic chemistry-turbulence interactions on soot formation in a turbulent non-premixed flame, Proc. Combust. Inst, vol.35, issue.2, pp.1911-1919, 2015.

R. S. Mehta, M. F. Modest, and D. C. Haworth, Radiation characteristics and turbulence-radiation interactions in sooting turbulent jet flames, Combustion Theory and Modelling, vol.14, issue.1, pp.105-124, 2010.

H. El-asrag, T. Lu, C. K. Law, and S. Menon, Simulation of soot formation in turbulent premixed flames, Combustion and Flame, vol.150, issue.1, pp.108-126, 2007.

D. Poitou, J. Amaya, M. E. Hafi, and B. Cuénot, Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations, Combust. Flame, vol.159, issue.4, pp.1605-1618, 2012.

P. J. Coelho, Turbulence-radiation interaction: From theory to application in numerical simulations, J. Heat Transfer, vol.134, issue.3, pp.1-13, 2012.

J. L. Consalvi and F. Nmira, Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame, J. Quant. Spectrosc. Radiat. Transf, vol.172, pp.50-57, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01459110

R. Vicquelin, Y. F. Zhang, O. Gicquel, and J. Taine, Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations, Journal of Fluid Mechanics, vol.753, pp.360-401, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01232488

J. Yon, A. Bescond, and F. Liu, On the radiative properties of soot aggregates part 1: Necking and overlapping, J. Quant. Spectrosc. Radiat. Transf, vol.162, pp.197-206, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01612377

G. Okyay, Impact of the morphology of soot aggregates on their radiative properties and the subsequent radiative heat transfer through sooty gaseous mixtures, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01331260